Graph Theory for Programmers


Book Description

In delivering lectures and writing books, we were most often forced to pay absolutely no attention to a great body of interesting results and useful algorithms appearing in numerous sources and occasionally encountered. It was absolutely that most of these re sults would finally be forgotten because it is impossible to run through the entire variety of sources where these materials could be published. Therefore, we decided to do what we can to correct this situation. We discussed this problem with Ershov and came to an idea to write an encyclopedia of algorithms on graphs focusing our main attention on the algorithms already used in programming and their generalizations or modifications. We thought that it is reasonable to group all graphs into certain classes and place the algo rithms developed for each class into a separate book. The existence of trees, i. e. , a class of graphs especially important for programming, also supported this decision. This monograph is the first but, as we hope, not the last book written as part of our project. It was preceded by two books "Algorithms on Trees" (1984) and "Algorithms of Processing of Trees" (1990) small editions of which were published at the Computer Center of the Siberian Division of the Russian Academy of Sciences. The books were distributed immediately and this made out our decision to prepare a combined mono graph on the basis of these books even stronger.




Graph Theory with Applications to Engineering and Computer Science


Book Description

Because of its inherent simplicity, graph theory has a wide range of applications in engineering, and in physical sciences. It has of course uses in social sciences, in linguistics and in numerous other areas. In fact, a graph can be used to represent almost any physical situation involving discrete objects and the relationship among them. Now with the solutions to engineering and other problems becoming so complex leading to larger graphs, it is virtually difficult to analyze without the use of computers. This book is recommended in IIT Kharagpur, West Bengal for B.Tech Computer Science, NIT Arunachal Pradesh, NIT Nagaland, NIT Agartala, NIT Silchar, Gauhati University, Dibrugarh University, North Eastern Regional Institute of Management, Assam Engineering College, West Bengal Univerity of Technology (WBUT) for B.Tech, M.Tech Computer Science, University of Burdwan, West Bengal for B.Tech. Computer Science, Jadavpur University, West Bengal for M.Sc. Computer Science, Kalyani College of Engineering, West Bengal for B.Tech. Computer Science. Key Features: This book provides a rigorous yet informal treatment of graph theory with an emphasis on computational aspects of graph theory and graph-theoretic algorithms. Numerous applications to actual engineering problems are incorpo-rated with software design and optimization topics.




Graph Theory, Coding Theory and Block Designs


Book Description

These are notes deriving from lecture courses on the theory of t-designs and graph theory given by the authors in 1973 at Westfield College, London.




Graph Theory and Computing


Book Description

Graph Theory and Computing focuses on the processes, methodologies, problems, and approaches involved in graph theory and computer science. The book first elaborates on alternating chain methods, average height of planted plane trees, and numbering of a graph. Discussions focus on numbered graphs and difference sets, Euclidean models and complete graphs, classes and conditions for graceful graphs, and maximum matching problem. The manuscript then elaborates on the evolution of the path number of a graph, production of graphs by computer, and graph-theoretic programming language. Topics include FORTRAN characteristics of GTPL, design considerations, representation and identification of graphs in a computer, production of simple graphs and star topologies, and production of stars having a given topology. The manuscript examines the entropy of transformed finite-state automata and associated languages; counting hexagonal and triangular polyominoes; and symmetry of cubical and general polyominoes. Graph coloring algorithms, algebraic isomorphism invariants for graphs of automata, and coding of various kinds of unlabeled trees are also discussed. The publication is a valuable source of information for researchers interested in graph theory and computing.




Computational Graph Theory


Book Description

One ofthe most important aspects in research fields where mathematics is "applied is the construction of a formal model of a real system. As for structural relations, graphs have turned out to provide the most appropriate tool for setting up the mathematical model. This is certainly one of the reasons for the rapid expansion in graph theory during the last decades. Furthermore, in recent years it also became clear that the two disciplines of graph theory and computer science have very much in common, and that each one has been capable of assisting significantly in the development of the other. On one hand, graph theorists have found that many of their problems can be solved by the use of com puting techniques, and on the other hand, computer scientists have realized that many of their concepts, with which they have to deal, may be conveniently expressed in the lan guage of graph theory, and that standard results in graph theory are often very relevant to the solution of problems concerning them. As a consequence, a tremendous number of publications has appeared, dealing with graphtheoretical problems from a computational point of view or treating computational problems using graph theoretical concepts.




Graph Theory As I Have Known It


Book Description

This book provides a unique and unusual introduction to graph theory by one of the founding fathers, and will be of interest to all researchers in the subject. It is not intended as a comprehensive treatise, but rather as an account of those parts of the theory that have been of special interest to the author. Professor Tutte details his experience in the area, and provides a fascinating insight into how he was led to his theorems and the proofs he used. As well as being of historical interest it provides a useful starting point for research, with references to further suggested books as well as the original papers. The book starts by detailing the first problems worked on by Professor Tutte and his colleagues during his days as an undergraduate member of the Trinity Mathematical Society in Cambridge. It covers subjects such as comnbinatorial problems in chess, the algebraicization of graph theory, reconstruction of graphs, and the chromatic eigenvalues. In each case fascinating historical and biographical information about the author's research is provided.




A First Course in Graph Theory


Book Description

Written by two prominent figures in the field, this comprehensive text provides a remarkably student-friendly approach. Its sound yet accessible treatment emphasizes the history of graph theory and offers unique examples and lucid proofs. 2004 edition.




Advanced Graph Theory and Combinatorics


Book Description

Advanced Graph Theory focuses on some of the main notions arising in graph theory with an emphasis from the very start of the book on the possible applications of the theory and the fruitful links existing with linear algebra. The second part of the book covers basic material related to linear recurrence relations with application to counting and the asymptotic estimate of the rate of growth of a sequence satisfying a recurrence relation.




Graphs and Applications


Book Description

Discrete Mathematics is one of the fastest growing areas in mathematics today with an ever-increasing number of courses in schools and universities. Graphs and Applications is based on a highly successful Open University course and the authors have paid particular attention to the presentation, clarity and arrangement of the material, making it ideally suited for independent study and classroom use. Includes a large number of examples, problems and exercises.




Graph Theory with Applications


Book Description