Gravity, Geoid and Height Systems


Book Description

This volume includes a selection of papers presented at the IAG international symposium "Gravity, Geoid and Height Systems 2012" (GGHS2012), which was organized by IAG Commission 2 “Gravity Field” with the assistance of the International Gravity Field Service (IGFS) and GGOS Theme 1 “Unified Global Height System”. The book summarizes the latest results on gravimetry and gravity networks, global gravity field modeling and applications, future gravity field missions. It provides a detailed compilation on advances in precise local and regional high-resolution geoid modeling, the establishment and unification of vertical reference systems, contributions to gravity field and mass transport modeling as well as articles on the gravity field of planetary bodies.




International Symposium on Gravity, Geoid and Height Systems 2016


Book Description

These proceedings contain 27 papers, which are the peer-reviewed versions of presentations made at the International Association of Geodesy (IAG) symposium “Gravity, Geoid and Height Systems 2016” (GGHS2016). GGHS2016 was the first Joint international symposium organized by IAG Commission 2 “Gravity Field”, the International Gravity Field Service (IGFS) and the GGOS Focus Area “Unified Height System”. It took place in Thessaloniki, Greece, in September 19-23, 2016 at the premises of the Aristotle University of Thessaloniki. The symposium was organized by the Department of Geodesy and Surveying of the Aristotle University of Thessaloniki, which presently hosts the IGFS Central Bureau. The focus of the Symposium was on methods for observing, estimating and interpreting the Earth gravity field as well as its applications. GGHS2016 continued the long and successful history of IAG’s Commission 2 Symposia.




Geoid Determination


Book Description

This book will be based on the material of the lecture noties in several International Schools for the Determination and Use of the Geoid, organized by the International Geoid Serivice of the International Association of Geodesy. It consolidates, unifies, and streamlines this material in a unique way not covereed by the few other books that exist on this subjext. More specifically, the book presents (for the first time in a single volume) the theory and methodology of the most common technique used for precise determination of the geoid, including the computation of the marine geoid from satellite altimetry data. These are illustrated by specific examples and actual computations of local geoids. In addition, the book provides the fundamentals of estimating orthometric heights without spirit levelling, by properly combining a geoid with heights from GPS. Besides the geodectic and geophysical uses, this last application has made geoid computation methods very popular in recent years because the entire GPS and GIS user communities are interested in estimating geoid undulations in order to convert GPS heights to physically meaningful orthometric heights (elevations above mean sea level). The overall purpose of the book is, therefore, to provide the user community (academics, graduate students, geophysicists, engineers, oceanographers, GIS and GPS users, researchers) with a self-contained textbook, which will supply them with the complete roadmap of estimating geoid undulations, from the theoretical definitions and formulas to the available numerical methods and their implementation and the test in practice.




Gravity, Geoid and Earth Observation


Book Description

These Proceedings include the written version of papers presented at the IAG International Symposium on "Gravity, Geoid and Earth Observation 2008". The Symposium was held in Chania, Crete, Greece, 23-27 June 2008 and organized by the Laboratory of Geodesy and Geomatics Engineering, Technical University of Crete, Greece. The meeting was arranged by the International Association of Geodesy and in particular by the IAG Commission 2: Gravity Field. The symposium aimed at bringing together geodesists and geophysicists working in the general areas of gravity, geoid, geodynamics and Earth observation. Besides covering the traditional research areas, special attention was paid to the use of geodetic methods for: Earth observation, environmental monitoring, Global Geodetic Observing System (GGOS), Earth Gravity Models (e.g., EGM08), geodynamics studies, dedicated gravity satellite missions (i.e., GOCE), airborne gravity surveys, Geodesy and geodynamics in polar regions, and the integration of geodetic and geophysical information.




Geodesy


Book Description

Geodetic datum (including coordinate datum, height datum, depth datum, gravimetry datum) and geodetic systems (including geodetic coordinate system, plane coordinate system, height system, gravimetry system) are the common foundations for every aspect of geomatics. This course book focuses on geodetic datum and geodetic systems, and describes the basic theories, techniques, methods of geodesy. The main themes include: the various techniques of geodetic data acquisition, geodetic datum and geodetic control networks, geoid and height systems, reference ellipsoid and geodetic coordinate systems, Gaussian projection and Gaussian plan coordinates and the establishment of geodetic coordinate systems. The framework of this book is based on several decades of lecture noted and the contents are developed systematically for a complete introduction to the geodetic foundations of geomatics.




Gravity, Geoid and Space Missions


Book Description

This volume represents the proceedings of the International Symposium on Gravity, Geoid, and Space Missions (GGSM2004), held in Porto, Portugal, 30 August - 3 September 2004. The symposium encompassed the themes of Commission 2 (Gravity Field) of IAG, as well as interdisciplinary topics related to geoid and gravity field, including integration of heterogeneous data and contributions from satellite and airborne techniques. Special focus was on gravity-dedicated satellite missions like CHAMP, GRACE, and GOCE. Projects addressing topographic and ice field mapping using SAR, LIDAR, and laser altimetry, as well as missions and studies related to planetary geodesy were also covered.




Gravity, Geoid and Geodynamics 2000


Book Description

This symposium continued the tradition of mid-term meetings held between the joint symposia of International Geoid and Gravity Commissions. This time, geodynamics was chosen as the third topic to accompany the traditional topics of gravity and geoid. The symposium thus aimed at bringing together geodesists and geophysicists working in the general areas of gravity, geoid and geodynamics. Besides covering the traditional research areas, special attention was paid to the use of geodetic methods for geodynamics studies, dedicated satellite missions, airborne surveys, geodesy and geodynamics of arctic regions, and the integration of geodetic and geophysical information.




Gravity and Geoid


Book Description

This volume discusses recent advances and future prospects in the exploration of the gravity field. Both theoretical and practical aspects, ranging from gravity instrumentation, space and airborne gradiometry, satellite altimetry, the presentation of international measurement campaigns and projects, networks and gravity field-related data bases and software, to geophysical inversion techniques and recent undertakings such as the determination of the geoid in Europe, are dealt with.




Geodesy for a Sustainable Earth


Book Description

This open access volume contains selected papers of the 2021 Scientific Assembly of the International Association of Geodesy – IAG2021. The Assembly was hosted by the Chinese Society for Geodesy, Photogrammetry and Cartography (CSGPC) in Beijing, China from June 28 to July 2, 2021. It was a hybrid conference with in-person and online attendants. In total, the Assembly was attended by 146 in-person participants and 1,123 online participants. The theme of the Assembly was Geodesy for a Sustainable Earth. 613 contributions (255 oral presentations and 358 poster presentations) covered all topics of the broad spectrum considered by the IAG: geodetic reference frames, Earth gravity field modelling, Earth rotation and geodynamics, positioning and applications, the Global Geodetic Observing System (GGOS), geodesy for climate research, marine geodesy, and novel sensors and quantum technology for geodesy. All published papers were peer-reviewed, and we warmly recognize the contributions and support of the Associate Editors and Reviewers.




Physical Geodesy


Book Description

Based on "Heiskanen/Moritz" which served for more than 30 years as a standard reference Treats physical geodesy encyclopaedically Seamless blend of new ideas and methods (GPS, satellites, collocation)