Group Theoretical Methods in Physics. Volume II


Book Description

These Proceedings cover various topics in modern physics in which group theoretical methods can be applied effectively. The two volumes, containing over 100 papers, cover such areas as representation theory, the theory and applications of dynamical symmetries and coherent states, symmetries in atomic, molecular, nuclear and elementary particle physics, field theory including gauge theories, supersymmetry and supergravity, general relativity and cosmology, the theory of space groups and its applications to solid state physics and phase transitions, the problems of quantum and classical mechanics and paraxial optics, and the theory of nonlinear equations and solitons.




Group Theoretical Methods in Physics


Book Description

Group Theoretical Methods in Physics: Proceedings of the Fifth International Colloquium provides information pertinent to the fundamental aspects of group theoretical methods in physics. This book provides a variety of topics, including nuclear collective motion, complex Riemannian geometry, quantum mechanics, and relativistic symmetry. Organized into six parts encompassing 64 chapters, this book begins with an overview of the theories of nuclear quadrupole dynamics. This text then examines the conventional approach in the determination of superstructures. Other chapters consider the Hamiltonian formalism and how it is applied to the KdV equation and to a slight variant of the KdV equation. This book discusses as well the significant differential equations of mathematical physics that are integrable Hamiltonian systems, including the equations governing self-induced transparency and the motion of particles under an inverse square potential. The final chapter deals with the decomposition of the tensor product of two irreducible representations of the symmetric group into a direct sum of irreducible representations. This book is a valuable resource for physicists.




Group Theory in Physics


Book Description

An introductory text book for graduates and advanced undergraduates on group representation theory. It emphasizes group theory's role as the mathematical framework for describing symmetry properties of classical and quantum mechanical systems. Familiarity with basic group concepts and techniques is invaluable in the education of a modern-day physicist. This book emphasizes general features and methods which demonstrate the power of the group-theoretical approach in exposing the systematics of physical systems with associated symmetry. Particular attention is given to pedagogy. In developing the theory, clarity in presenting the main ideas and consequences is given the same priority as comprehensiveness and strict rigor. To preserve the integrity of the mathematics, enough technical information is included in the appendices to make the book almost self-contained. A set of problems and solutions has been published in a separate booklet.







Group Theoretical Methods in Physics


Book Description

Symmetry is permeating our understanding of nature: Group theoretical methods of intrinsic interest to mathematics have expanded their applications from physics to chemistry and biology. The ICGTMP Colloquia maintain the communication among the many branches into which this endeavor has bloomed. Lie group and representation theory, special functions, foundations of quantum mechanics, and elementary particle, nuclear, atomic, and molecular physics are among the traditional subjects. More recent areas include supersymmetry, superstrings and quantum gravity, integrability, nonlinear systems and quantum chaos, semigroups, time asymmetry and resonances, condensed matter, and statistical physics. Topics such as linear and nonlinear optics, quantum computing, discrete systems, and signal analysis have only in the last few years become part of the group theorists' turf. In Group Theoretical Methods in Physics, readers will find both review contributions that distill the state of the art in a broad field, and articles pointed to specific problems, in many cases, preceding their formal publication in the journal literature.




Applied Group Theory


Book Description

This text introduces advanced undergraduates and graduate students to key applications of group theory. Topics include the nature of symmetry operations; applications to vibrating systems, continuum mechanics, and quantum structures; permutation, continuous, and rotation groups; and physical Lie algebras. Each chapter concludes with a concise review, discussion questions, problems, and references. 1992 edition.




Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems


Book Description

The book reviews a large number of 1- and 2-dimensional equations that describe nonlinear phenomena in various areas of modern theoretical and mathematical physics. It is meant, above all, for physicists who specialize in the field theory and physics of elementary particles and plasma, for mathe maticians dealing with nonlinear differential equations, differential geometry, and algebra, and the theory of Lie algebras and groups and their representa tions, and for students and post-graduates in these fields. We hope that the book will be useful also for experts in hydrodynamics, solid-state physics, nonlinear optics electrophysics, biophysics and physics of the Earth. The first two chapters of the book present some results from the repre sentation theory of Lie groups and Lie algebras and their counterpart on supermanifolds in a form convenient in what follows. They are addressed to those who are interested in integrable systems but have a scanty vocabulary in the language of representation theory. The experts may refer to the first two chapters only occasionally. As we wanted to give the reader an opportunity not only to come to grips with the problem on the ideological level but also to integrate her or his own concrete nonlinear equations without reference to the literature, we had to expose in a self-contained way the appropriate parts of the representation theory from a particular point of view.







Group Theory


Book Description

This concise, class-tested book was refined over the authors’ 30 years as instructors at MIT and the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory along with applications helps students to learn, understand and use it for their own needs. Thus, the theoretical background is confined to introductory chapters. Subsequent chapters develop new theory alongside applications so that students can retain new concepts, build on concepts already learned, and see interrelations between topics. Essential problem sets between chapters aid retention of new material and consolidate material learned in previous chapters.




Group Theory In Physics: A Practitioner's Guide


Book Description

'The book contains a lot of examples, a lot of non-standard material which is not included in many other books. At the same time the authors manage to avoid numerous cumbersome calculations … It is a great achievement that the authors found a balance.'zbMATHThis book presents the study of symmetry groups in Physics from a practical perspective, i.e. emphasising the explicit methods and algorithms useful for the practitioner and profusely illustrating by examples.The first half reviews the algebraic, geometrical and topological notions underlying the theory of Lie groups, with a review of the representation theory of finite groups. The topic of Lie algebras is revisited from the perspective of realizations, useful for explicit computations within these groups. The second half is devoted to applications in physics, divided into three main parts — the first deals with space-time symmetries, the Wigner method for representations and applications to relativistic wave equations. The study of kinematical algebras and groups illustrates the properties and capabilities of the notions of contractions, central extensions and projective representations. Gauge symmetries and symmetries in Particle Physics are studied in the context of the Standard Model, finishing with a discussion on Grand-Unified Theories.