Grundlagen der Analysis


Book Description

Landau's classic book on the foundations of analysis is presented in its original German, with a German-English dictionary as an appendix. One intent of this edition is to provide the English-speaking mathematician with an opportunity to learn some mathematical German. Of course, a pleasant by-product is having Landau's exposition on the construction of the real numbers from the natural numbers using Dedekind cuts. The book is written in an extremely telegraphic style, with few words outside the 'Theorem-Proof' motif, making the German notably simpler than in more advanced texts. Thus, the student who begins this book with little or no knowledge of German will gain the experience of successfully reading an entire book in mathematics and with it a feeling for the language and a well-ingrained mathematical vocabulary. The English edition of the book is available as Foundations of Analysis.




Foundations of Analysis


Book Description

Natural numbers, zero, negative integers, rational numbers, irrational numbers, real numbers, complex numbers, . . ., and, what are numbers? The most accurate mathematical answer to the question is given in this book.




Foundations of Analysis


Book Description

Why does 2 x 2 = 4? What are fractions? Imaginary numbers? Why do the laws of algebra hold? What are the properties of the numbers on which the differential and integral calculus is based? In other words, What are numbers? And why do they have the properties we attribute to them? This work answers such questions.--




David Hilbert and the Axiomatization of Physics (1898–1918)


Book Description

David Hilbert (1862-1943) was the most influential mathematician of the early twentieth century and, together with Henri Poincaré, the last mathematical universalist. His main known areas of research and influence were in pure mathematics (algebra, number theory, geometry, integral equations and analysis, logic and foundations), but he was also known to have some interest in physical topics. The latter, however, was traditionally conceived as comprising only sporadic incursions into a scientific domain which was essentially foreign to his mainstream of activity and in which he only made scattered, if important, contributions. Based on an extensive use of mainly unpublished archival sources, the present book presents a totally fresh and comprehensive picture of Hilbert’s intense, original, well-informed, and highly influential involvement with physics, that spanned his entire career and that constituted a truly main focus of interest in his scientific horizon. His program for axiomatizing physical theories provides the connecting link with his research in more purely mathematical fields, especially geometry, and a unifying point of view from which to understand his physical activities in general. In particular, the now famous dialogue and interaction between Hilbert and Einstein, leading to the formulation in 1915 of the generally covariant field-equations of gravitation, is adequately explored here within the natural context of Hilbert’s overall scientific world-view. This book will be of interest to historians of physics and of mathematics, to historically-minded physicists and mathematicians, and to philosophers of science.




Non-standard Analysis


Book Description

Considered by many to be Abraham Robinson's magnum opus, this book offers an explanation of the development and applications of non-standard analysis by the mathematician who founded the subject. Non-standard analysis grew out of Robinson's attempt to resolve the contradictions posed by infinitesimals within calculus. He introduced this new subject in a seminar at Princeton in 1960, and it remains as controversial today as it was then. This paperback reprint of the 1974 revised edition is indispensable reading for anyone interested in non-standard analysis. It treats in rich detail many areas of application, including topology, functions of a real variable, functions of a complex variable, and normed linear spaces, together with problems of boundary layer flow of viscous fluids and rederivations of Saint-Venant's hypothesis concerning the distribution of stresses in an elastic body.




Course In Analysis, A - Volume I: Introductory Calculus, Analysis Of Functions Of One Real Variable


Book Description

Part 1 begins with an overview of properties of the real numbers and starts to introduce the notions of set theory. The absolute value and in particular inequalities are considered in great detail before functions and their basic properties are handled. From this the authors move to differential and integral calculus. Many examples are discussed. Proofs not depending on a deeper understanding of the completeness of the real numbers are provided. As a typical calculus module, this part is thought as an interface from school to university analysis. Part 2 returns to the structure of the real numbers, most of all to the problem of their completeness which is discussed in great depth. Once the completeness of the real line is settled the authors revisit the main results of Part 1 and provide complete proofs. Moreover they develop differential and integral calculus on a rigorous basis much further by discussing uniform convergence and the interchanging of limits, infinite series (including Taylor series) and infinite products, improper integrals and the gamma function. In addition they discussed in more detail as usual monotone and convex functions. Finally, the authors supply a number of Appendices, among them Appendices on basic mathematical logic, more on set theory, the Peano axioms and mathematical induction, and on further discussions of the completeness of the real numbers. Remarkably, Volume I contains ca. 360 problems with complete, detailed solutions.




Differential and Integral Calculus


Book Description

After completing his famous Foundations of Analysis, Landau turned his attention to this book on calculus. The approach is that of an unrepentant analyst, with an emphasis on functions rather than on geometric or physical applications. The book is another example of Landau's formidable skill as an expositor. It is a masterpiece of rigor and clarity. And what a book it is! The marks of Landau's thoroughness and elegance, and of his undoubted authority, impress themselves on the reader at every turn, from the opening of the preface ... to the closing of the final chapter. It is a book that all analysts ... should possess ... to see how a master of his craft like Landau presented the calculus when he was at the height of his power and reputation. --Mathematical Gazette




Mathematical Analysis I


Book Description

This work by Zorich on Mathematical Analysis constitutes a thorough first course in real analysis, leading from the most elementary facts about real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, and elliptic functions.




Analysis and Synthesis of Logics


Book Description

Starting with simple examples showing the relevance of cutting and pasting logics, the monograph develops a mathematical theory of combining and decomposing logics, ranging from propositional and first-order based logics to higher-order based logics as well as to non-truth functional logics. The theory covers mechanisms for combining semantic structures and deductive systems either of the same or different nature. The issue of preservation of properties is addressed.




An Introduction to the Mathematical Theory of Finite Elements


Book Description

This introduction to the theory of Sobolev spaces and Hilbert space methods in partial differential equations is geared toward readers of modest mathematical backgrounds. It offers coherent, accessible demonstrations of the use of these techniques in developing the foundations of the theory of finite element approximations. J. T. Oden is Director of the Institute for Computational Engineering & Sciences (ICES) at the University of Texas at Austin, and J. N. Reddy is a Professor of Engineering at Texas A&M University. They developed this essentially self-contained text from their seminars and courses for students with diverse educational backgrounds. Their effective presentation begins with introductory accounts of the theory of distributions, Sobolev spaces, intermediate spaces and duality, the theory of elliptic equations, and variational boundary value problems. The second half of the text explores the theory of finite element interpolation, finite element methods for elliptic equations, and finite element methods for initial boundary value problems. Detailed proofs of the major theorems appear throughout the text, in addition to numerous examples.