Hadoop 2.x Administration Cookbook


Book Description

Over 100 practical recipes to help you become an expert Hadoop administrator About This Book Become an expert Hadoop administrator and perform tasks to optimize your Hadoop Cluster Import and export data into Hive and use Oozie to manage workflow. Practical recipes will help you plan and secure your Hadoop cluster, and make it highly available Who This Book Is For If you are a system administrator with a basic understanding of Hadoop and you want to get into Hadoop administration, this book is for you. It's also ideal if you are a Hadoop administrator who wants a quick reference guide to all the Hadoop administration-related tasks and solutions to commonly occurring problems What You Will Learn Set up the Hadoop architecture to run a Hadoop cluster smoothly Maintain a Hadoop cluster on HDFS, YARN, and MapReduce Understand high availability with Zookeeper and Journal Node Configure Flume for data ingestion and Oozie to run various workflows Tune the Hadoop cluster for optimal performance Schedule jobs on a Hadoop cluster using the Fair and Capacity scheduler Secure your cluster and troubleshoot it for various common pain points In Detail Hadoop enables the distributed storage and processing of large datasets across clusters of computers. Learning how to administer Hadoop is crucial to exploit its unique features. With this book, you will be able to overcome common problems encountered in Hadoop administration. The book begins with laying the foundation by showing you the steps needed to set up a Hadoop cluster and its various nodes. You will get a better understanding of how to maintain Hadoop cluster, especially on the HDFS layer and using YARN and MapReduce. Further on, you will explore durability and high availability of a Hadoop cluster. You'll get a better understanding of the schedulers in Hadoop and how to configure and use them for your tasks. You will also get hands-on experience with the backup and recovery options and the performance tuning aspects of Hadoop. Finally, you will get a better understanding of troubleshooting, diagnostics, and best practices in Hadoop administration. By the end of this book, you will have a proper understanding of working with Hadoop clusters and will also be able to secure, encrypt it, and configure auditing for your Hadoop clusters. Style and approach This book contains short recipes that will help you run a Hadoop cluster efficiently. The recipes are solutions to real-life problems that administrators encounter while working with a Hadoop cluster




Apache Hadoop 3 Quick Start Guide


Book Description

A fast paced guide that will help you learn about Apache Hadoop 3 and its ecosystem Key FeaturesSet up, configure and get started with Hadoop to get useful insights from large data setsWork with the different components of Hadoop such as MapReduce, HDFS and YARN Learn about the new features introduced in Hadoop 3Book Description Apache Hadoop is a widely used distributed data platform. It enables large datasets to be efficiently processed instead of using one large computer to store and process the data. This book will get you started with the Hadoop ecosystem, and introduce you to the main technical topics, including MapReduce, YARN, and HDFS. The book begins with an overview of big data and Apache Hadoop. Then, you will set up a pseudo Hadoop development environment and a multi-node enterprise Hadoop cluster. You will see how the parallel programming paradigm, such as MapReduce, can solve many complex data processing problems. The book also covers the important aspects of the big data software development lifecycle, including quality assurance and control, performance, administration, and monitoring. You will then learn about the Hadoop ecosystem, and tools such as Kafka, Sqoop, Flume, Pig, Hive, and HBase. Finally, you will look at advanced topics, including real time streaming using Apache Storm, and data analytics using Apache Spark. By the end of the book, you will be well versed with different configurations of the Hadoop 3 cluster. What you will learnStore and analyze data at scale using HDFS, MapReduce and YARNInstall and configure Hadoop 3 in different modesUse Yarn effectively to run different applications on Hadoop based platformUnderstand and monitor how Hadoop cluster is managedConsume streaming data using Storm, and then analyze it using SparkExplore Apache Hadoop ecosystem components, such as Flume, Sqoop, HBase, Hive, and KafkaWho this book is for Aspiring Big Data professionals who want to learn the essentials of Hadoop 3 will find this book to be useful. Existing Hadoop users who want to get up to speed with the new features introduced in Hadoop 3 will also benefit from this book. Having knowledge of Java programming will be an added advantage.




Creativity in Intelligent Technologies and Data Science


Book Description

This book constitutes the proceedings of the 4th Conference on Creativity in Intellectual Technologies and Data Science, CIT&DS 2021, held in Volgograd, Russia, in September 2021. The 39 full papers, 7 short papers, and 2 keynote papers presented were carefully reviewed and selected from 182 submissions. The papers are organized in the following topical sections: Artificial intelligence and deep learning technologies: knowledge discovery in patent and open sources; open science semantic technologies; IoT and computer vision in knowledge-based control; Cyber-physical systems and big data-driven control: pro-active modeling in intelligent decision making support; design creativity in CASE/CAI/CAD/PDM; intelligent technologies in urban design and computing; Intelligent technologies in social engineering: data science in social networks analysis and cyber security; educational creativity and game-based learning; intelligent assistive technologies: software design and application.




Hbase Administration Cookbook


Book Description

As part of Packt's cookbook series, each recipe offers a practical, step-by-step solution to common problems found in HBase administration. This book is for HBase administrators, developers, and will even help Hadoop administrators. You are not required to have HBase experience, but are expected to have a basic understanding of Hadoop and MapReduce.




Apache Spark 2.x Machine Learning Cookbook


Book Description

Simplify machine learning model implementations with Spark About This Book Solve the day-to-day problems of data science with Spark This unique cookbook consists of exciting and intuitive numerical recipes Optimize your work by acquiring, cleaning, analyzing, predicting, and visualizing your data Who This Book Is For This book is for Scala developers with a fairly good exposure to and understanding of machine learning techniques, but lack practical implementations with Spark. A solid knowledge of machine learning algorithms is assumed, as well as hands-on experience of implementing ML algorithms with Scala. However, you do not need to be acquainted with the Spark ML libraries and ecosystem. What You Will Learn Get to know how Scala and Spark go hand-in-hand for developers when developing ML systems with Spark Build a recommendation engine that scales with Spark Find out how to build unsupervised clustering systems to classify data in Spark Build machine learning systems with the Decision Tree and Ensemble models in Spark Deal with the curse of high-dimensionality in big data using Spark Implement Text analytics for Search Engines in Spark Streaming Machine Learning System implementation using Spark In Detail Machine learning aims to extract knowledge from data, relying on fundamental concepts in computer science, statistics, probability, and optimization. Learning about algorithms enables a wide range of applications, from everyday tasks such as product recommendations and spam filtering to cutting edge applications such as self-driving cars and personalized medicine. You will gain hands-on experience of applying these principles using Apache Spark, a resilient cluster computing system well suited for large-scale machine learning tasks. This book begins with a quick overview of setting up the necessary IDEs to facilitate the execution of code examples that will be covered in various chapters. It also highlights some key issues developers face while working with machine learning algorithms on the Spark platform. We progress by uncovering the various Spark APIs and the implementation of ML algorithms with developing classification systems, recommendation engines, text analytics, clustering, and learning systems. Toward the final chapters, we'll focus on building high-end applications and explain various unsupervised methodologies and challenges to tackle when implementing with big data ML systems. Style and approach This book is packed with intuitive recipes supported with line-by-line explanations to help you understand how to optimize your work flow and resolve problems when working with complex data modeling tasks and predictive algorithms. This is a valuable resource for data scientists and those working on large scale data projects.




Hadoop Operations and Cluster Management Cookbook


Book Description

Solve specific problems using individual self-contained code recipes, or work through the book to develop your capabilities. This book is packed with easy-to-follow code and commands used for illustration, which makes your learning curve easy and quick.If you are a Hadoop cluster system administrator with Unix/Linux system management experience and you are looking to get a good grounding in how to set up and manage a Hadoop cluster, then this book is for you. It's assumed that you will have some experience in Unix/Linux command line already, as well as being familiar with network communication basics.




Apache Spark 2.x Cookbook


Book Description

Over 70 recipes to help you use Apache Spark as your single big data computing platform and master its libraries About This Book This book contains recipes on how to use Apache Spark as a unified compute engine Cover how to connect various source systems to Apache Spark Covers various parts of machine learning including supervised/unsupervised learning & recommendation engines Who This Book Is For This book is for data engineers, data scientists, and those who want to implement Spark for real-time data processing. Anyone who is using Spark (or is planning to) will benefit from this book. The book assumes you have a basic knowledge of Scala as a programming language. What You Will Learn Install and configure Apache Spark with various cluster managers & on AWS Set up a development environment for Apache Spark including Databricks Cloud notebook Find out how to operate on data in Spark with schemas Get to grips with real-time streaming analytics using Spark Streaming & Structured Streaming Master supervised learning and unsupervised learning using MLlib Build a recommendation engine using MLlib Graph processing using GraphX and GraphFrames libraries Develop a set of common applications or project types, and solutions that solve complex big data problems In Detail While Apache Spark 1.x gained a lot of traction and adoption in the early years, Spark 2.x delivers notable improvements in the areas of API, schema awareness, Performance, Structured Streaming, and simplifying building blocks to build better, faster, smarter, and more accessible big data applications. This book uncovers all these features in the form of structured recipes to analyze and mature large and complex sets of data. Starting with installing and configuring Apache Spark with various cluster managers, you will learn to set up development environments. Further on, you will be introduced to working with RDDs, DataFrames and Datasets to operate on schema aware data, and real-time streaming with various sources such as Twitter Stream and Apache Kafka. You will also work through recipes on machine learning, including supervised learning, unsupervised learning & recommendation engines in Spark. Last but not least, the final few chapters delve deeper into the concepts of graph processing using GraphX, securing your implementations, cluster optimization, and troubleshooting. Style and approach This book is packed with intuitive recipes supported with line-by-line explanations to help you understand Spark 2.x's real-time processing capabilities and deploy scalable big data solutions. This is a valuable resource for data scientists and those working on large-scale data projects.




Cloudera Administration Handbook


Book Description

An easy-to-follow Apache Hadoop administrator’s guide filled with practical screenshots and explanations for each step and configuration. This book is great for administrators interested in setting up and managing a large Hadoop cluster. If you are an administrator, or want to be an administrator, and you are ready to build and maintain a production-level cluster running CDH5, then this book is for you.




Mastering Hadoop 3


Book Description

A comprehensive guide to mastering the most advanced Hadoop 3 concepts Key FeaturesGet to grips with the newly introduced features and capabilities of Hadoop 3Crunch and process data using MapReduce, YARN, and a host of tools within the Hadoop ecosystemSharpen your Hadoop skills with real-world case studies and codeBook Description Apache Hadoop is one of the most popular big data solutions for distributed storage and for processing large chunks of data. With Hadoop 3, Apache promises to provide a high-performance, more fault-tolerant, and highly efficient big data processing platform, with a focus on improved scalability and increased efficiency. With this guide, you’ll understand advanced concepts of the Hadoop ecosystem tool. You’ll learn how Hadoop works internally, study advanced concepts of different ecosystem tools, discover solutions to real-world use cases, and understand how to secure your cluster. It will then walk you through HDFS, YARN, MapReduce, and Hadoop 3 concepts. You’ll be able to address common challenges like using Kafka efficiently, designing low latency, reliable message delivery Kafka systems, and handling high data volumes. As you advance, you’ll discover how to address major challenges when building an enterprise-grade messaging system, and how to use different stream processing systems along with Kafka to fulfil your enterprise goals. By the end of this book, you’ll have a complete understanding of how components in the Hadoop ecosystem are effectively integrated to implement a fast and reliable data pipeline, and you’ll be equipped to tackle a range of real-world problems in data pipelines. What you will learnGain an in-depth understanding of distributed computing using Hadoop 3Develop enterprise-grade applications using Apache Spark, Flink, and moreBuild scalable and high-performance Hadoop data pipelines with security, monitoring, and data governanceExplore batch data processing patterns and how to model data in HadoopMaster best practices for enterprises using, or planning to use, Hadoop 3 as a data platformUnderstand security aspects of Hadoop, including authorization and authenticationWho this book is for If you want to become a big data professional by mastering the advanced concepts of Hadoop, this book is for you. You’ll also find this book useful if you’re a Hadoop professional looking to strengthen your knowledge of the Hadoop ecosystem. Fundamental knowledge of the Java programming language and basics of Hadoop is necessary to get started with this book.




Apache Sqoop Cookbook


Book Description

Integrating data from multiple sources is essential in the age of big data, but it can be a challenging and time-consuming task. This handy cookbook provides dozens of ready-to-use recipes for using Apache Sqoop, the command-line interface application that optimizes data transfers between relational databases and Hadoop. Sqoop is both powerful and bewildering, but with this cookbook’s problem-solution-discussion format, you’ll quickly learn how to deploy and then apply Sqoop in your environment. The authors provide MySQL, Oracle, and PostgreSQL database examples on GitHub that you can easily adapt for SQL Server, Netezza, Teradata, or other relational systems. Transfer data from a single database table into your Hadoop ecosystem Keep table data and Hadoop in sync by importing data incrementally Import data from more than one database table Customize transferred data by calling various database functions Export generated, processed, or backed-up data from Hadoop to your database Run Sqoop within Oozie, Hadoop’s specialized workflow scheduler Load data into Hadoop’s data warehouse (Hive) or database (HBase) Handle installation, connection, and syntax issues common to specific database vendors