Hadoop Operations and Cluster Management Cookbook


Book Description

Solve specific problems using individual self-contained code recipes, or work through the book to develop your capabilities. This book is packed with easy-to-follow code and commands used for illustration, which makes your learning curve easy and quick.If you are a Hadoop cluster system administrator with Unix/Linux system management experience and you are looking to get a good grounding in how to set up and manage a Hadoop cluster, then this book is for you. It's assumed that you will have some experience in Unix/Linux command line already, as well as being familiar with network communication basics.




Hbase Administration Cookbook


Book Description

As part of Packt's cookbook series, each recipe offers a practical, step-by-step solution to common problems found in HBase administration. This book is for HBase administrators, developers, and will even help Hadoop administrators. You are not required to have HBase experience, but are expected to have a basic understanding of Hadoop and MapReduce.




HDInsight Essentials - Second Edition


Book Description

If you want to discover one of the latest tools designed to produce stunning Big Data insights, this book features everything you need to get to grips with your data. Whether you are a data architect, developer, or a business strategist, HDInsight adds value in everything from development, administration, and reporting.




Cloudera Administration Handbook


Book Description

An easy-to-follow Apache Hadoop administrator’s guide filled with practical screenshots and explanations for each step and configuration. This book is great for administrators interested in setting up and managing a large Hadoop cluster. If you are an administrator, or want to be an administrator, and you are ready to build and maintain a production-level cluster running CDH5, then this book is for you.




Hadoop Operations


Book Description

If you’ve been asked to maintain large and complex Hadoop clusters, this book is a must. Demand for operations-specific material has skyrocketed now that Hadoop is becoming the de facto standard for truly large-scale data processing in the data center. Eric Sammer, Principal Solution Architect at Cloudera, shows you the particulars of running Hadoop in production, from planning, installing, and configuring the system to providing ongoing maintenance. Rather than run through all possible scenarios, this pragmatic operations guide calls out what works, as demonstrated in critical deployments. Get a high-level overview of HDFS and MapReduce: why they exist and how they work Plan a Hadoop deployment, from hardware and OS selection to network requirements Learn setup and configuration details with a list of critical properties Manage resources by sharing a cluster across multiple groups Get a runbook of the most common cluster maintenance tasks Monitor Hadoop clusters—and learn troubleshooting with the help of real-world war stories Use basic tools and techniques to handle backup and catastrophic failure




Practical Data Analysis


Book Description

Each chapter of the book quickly introduces a key ‘theme’ of Data Analysis, before immersing you in the practical aspects of each theme. You’ll learn quickly how to perform all aspects of Data Analysis.Practical Data Analysis is a book ideal for home and small business users who want to slice & dice the data they have on hand with minimum hassle.




Apache Hadoop 3 Quick Start Guide


Book Description

A fast paced guide that will help you learn about Apache Hadoop 3 and its ecosystem Key FeaturesSet up, configure and get started with Hadoop to get useful insights from large data setsWork with the different components of Hadoop such as MapReduce, HDFS and YARN Learn about the new features introduced in Hadoop 3Book Description Apache Hadoop is a widely used distributed data platform. It enables large datasets to be efficiently processed instead of using one large computer to store and process the data. This book will get you started with the Hadoop ecosystem, and introduce you to the main technical topics, including MapReduce, YARN, and HDFS. The book begins with an overview of big data and Apache Hadoop. Then, you will set up a pseudo Hadoop development environment and a multi-node enterprise Hadoop cluster. You will see how the parallel programming paradigm, such as MapReduce, can solve many complex data processing problems. The book also covers the important aspects of the big data software development lifecycle, including quality assurance and control, performance, administration, and monitoring. You will then learn about the Hadoop ecosystem, and tools such as Kafka, Sqoop, Flume, Pig, Hive, and HBase. Finally, you will look at advanced topics, including real time streaming using Apache Storm, and data analytics using Apache Spark. By the end of the book, you will be well versed with different configurations of the Hadoop 3 cluster. What you will learnStore and analyze data at scale using HDFS, MapReduce and YARNInstall and configure Hadoop 3 in different modesUse Yarn effectively to run different applications on Hadoop based platformUnderstand and monitor how Hadoop cluster is managedConsume streaming data using Storm, and then analyze it using SparkExplore Apache Hadoop ecosystem components, such as Flume, Sqoop, HBase, Hive, and KafkaWho this book is for Aspiring Big Data professionals who want to learn the essentials of Hadoop 3 will find this book to be useful. Existing Hadoop users who want to get up to speed with the new features introduced in Hadoop 3 will also benefit from this book. Having knowledge of Java programming will be an added advantage.




Hadoop Real-World Solutions Cookbook


Book Description

Over 90 hands-on recipes to help you learn and master the intricacies of Apache Hadoop 2.X, YARN, Hive, Pig, Oozie, Flume, Sqoop, Apache Spark, and Mahout About This Book Implement outstanding Machine Learning use cases on your own analytics models and processes. Solutions to common problems when working with the Hadoop ecosystem. Step-by-step implementation of end-to-end big data use cases. Who This Book Is For Readers who have a basic knowledge of big data systems and want to advance their knowledge with hands-on recipes. What You Will Learn Installing and maintaining Hadoop 2.X cluster and its ecosystem. Write advanced Map Reduce programs and understand design patterns. Advanced Data Analysis using the Hive, Pig, and Map Reduce programs. Import and export data from various sources using Sqoop and Flume. Data storage in various file formats such as Text, Sequential, Parquet, ORC, and RC Files. Machine learning principles with libraries such as Mahout Batch and Stream data processing using Apache Spark In Detail Big data is the current requirement. Most organizations produce huge amount of data every day. With the arrival of Hadoop-like tools, it has become easier for everyone to solve big data problems with great efficiency and at minimal cost. Grasping Machine Learning techniques will help you greatly in building predictive models and using this data to make the right decisions for your organization. Hadoop Real World Solutions Cookbook gives readers insights into learning and mastering big data via recipes. The book not only clarifies most big data tools in the market but also provides best practices for using them. The book provides recipes that are based on the latest versions of Apache Hadoop 2.X, YARN, Hive, Pig, Sqoop, Flume, Apache Spark, Mahout and many more such ecosystem tools. This real-world-solution cookbook is packed with handy recipes you can apply to your own everyday issues. Each chapter provides in-depth recipes that can be referenced easily. This book provides detailed practices on the latest technologies such as YARN and Apache Spark. Readers will be able to consider themselves as big data experts on completion of this book. This guide is an invaluable tutorial if you are planning to implement a big data warehouse for your business. Style and approach An easy-to-follow guide that walks you through world of big data. Each tool in the Hadoop ecosystem is explained in detail and the recipes are placed in such a manner that readers can implement them sequentially. Plenty of reference links are provided for advanced reading.




Apache Spark 2.x Cookbook


Book Description

Over 70 recipes to help you use Apache Spark as your single big data computing platform and master its libraries About This Book This book contains recipes on how to use Apache Spark as a unified compute engine Cover how to connect various source systems to Apache Spark Covers various parts of machine learning including supervised/unsupervised learning & recommendation engines Who This Book Is For This book is for data engineers, data scientists, and those who want to implement Spark for real-time data processing. Anyone who is using Spark (or is planning to) will benefit from this book. The book assumes you have a basic knowledge of Scala as a programming language. What You Will Learn Install and configure Apache Spark with various cluster managers & on AWS Set up a development environment for Apache Spark including Databricks Cloud notebook Find out how to operate on data in Spark with schemas Get to grips with real-time streaming analytics using Spark Streaming & Structured Streaming Master supervised learning and unsupervised learning using MLlib Build a recommendation engine using MLlib Graph processing using GraphX and GraphFrames libraries Develop a set of common applications or project types, and solutions that solve complex big data problems In Detail While Apache Spark 1.x gained a lot of traction and adoption in the early years, Spark 2.x delivers notable improvements in the areas of API, schema awareness, Performance, Structured Streaming, and simplifying building blocks to build better, faster, smarter, and more accessible big data applications. This book uncovers all these features in the form of structured recipes to analyze and mature large and complex sets of data. Starting with installing and configuring Apache Spark with various cluster managers, you will learn to set up development environments. Further on, you will be introduced to working with RDDs, DataFrames and Datasets to operate on schema aware data, and real-time streaming with various sources such as Twitter Stream and Apache Kafka. You will also work through recipes on machine learning, including supervised learning, unsupervised learning & recommendation engines in Spark. Last but not least, the final few chapters delve deeper into the concepts of graph processing using GraphX, securing your implementations, cluster optimization, and troubleshooting. Style and approach This book is packed with intuitive recipes supported with line-by-line explanations to help you understand Spark 2.x's real-time processing capabilities and deploy scalable big data solutions. This is a valuable resource for data scientists and those working on large-scale data projects.




Hadoop Essentials


Book Description

If you are a system or application developer interested in learning how to solve practical problems using the Hadoop framework, then this book is ideal for you. This book is also meant for Hadoop professionals who want to find solutions to the different challenges they come across in their Hadoop projects.