Handbook of Computational Molecular Biology


Book Description

The enormous complexity of biological systems at the molecular level must be answered with powerful computational methods. Computational biology is a young field, but has seen rapid growth and advancement over the past few decades. Surveying the progress made in this multidisciplinary field, the Handbook of Computational Molecular Biology offers comprehensive, systematic coverage of the various techniques and methodologies currently available. Accomplished researcher Srinivas Aluru leads a team of experts from around the world to produce this groundbreaking, authoritative reference. With discussions ranging from fundamental concepts to practical applications, this book details the algorithms necessary to solve novel problems and manage the massive amounts of data housed in biological databases throughout the world. Divided into eight sections for convenient searching, the handbook covers methods and algorithms for sequence alignment, string data structures, sequence assembly and clustering, genome-scale computational methods in comparative genomics, evolutionary and phylogenetic trees, microarrays and gene expression analysis, computational methods in structural biology, and bioinformatics databases and data mining. The Handbook of Computational Molecular Biology is the first resource to integrate coverage of the broad spectrum of topics in computational biology and bioinformatics. It supplies a quick-reference guide for easy implementation and provides a strong foundation for future discoveries in the field.




Handbook of Systems Biology


Book Description

This book provides an entry point into Systems Biology for researchers in genetics, molecular biology, cell biology, microbiology and biomedical science to understand the key concepts to expanding their work. Chapters organized around broader themes of Organelles and Organisms, Systems Properties of Biological Processes, Cellular Networks, and Systems Biology and Disease discuss the development of concepts, the current applications, and the future prospects. Emphasis is placed on concepts and insights into the multi-disciplinary nature of the field as well as the importance of systems biology in human biological research. Technology, being an extremely important aspect of scientific progress overall, and in the creation of new fields in particular, is discussed in 'boxes' within each chapter to relate to appropriate topics. - 2013 Honorable Mention for Single Volume Reference in Science from the Association of American Publishers' PROSE Awards - Emphasizes the interdisciplinary nature of systems biology with contributions from leaders in a variety of disciplines - Includes the latest research developments in human and animal models to assist with translational research - Presents biological and computational aspects of the science side-by-side to facilitate collaboration between computational and biological researchers




Advanced Methods in Molecular Biology and Biotechnology


Book Description

Advanced Methods in Molecular Biology and Biotechnology: A Practical Lab Manual is a concise reference on common protocols and techniques for advanced molecular biology and biotechnology experimentation. Each chapter focuses on a different method, providing an overview before delving deeper into the procedure in a step-by-step approach. Techniques covered include genomic DNA extraction using cetyl trimethylammonium bromide (CTAB) and chloroform extraction, chromatographic techniques, ELISA, hybridization, gel electrophoresis, dot blot analysis and methods for studying polymerase chain reactions. Laboratory protocols and standard operating procedures for key equipment are also discussed, providing an instructive overview for lab work. This practical guide focuses on the latest advances and innovations in methods for molecular biology and biotechnology investigation, helping researchers and practitioners enhance and advance their own methodologies and take their work to the next level. - Explores a wide range of advanced methods that can be applied by researchers in molecular biology and biotechnology - Features clear, step-by-step instruction for applying the techniques covered - Offers an introduction to laboratory protocols and recommendations for best practice when conducting experimental work, including standard operating procedures for key equipment




Molecular Biology Techniques


Book Description

This manual is an indispensable tool for introducing advanced undergraduates and beginning graduate students to the techniques of recombinant DNA technology, or gene cloning and expression. The techniques used in basic research and biotechnology laboratories are covered in detail. Students gain hands-on experience from start to finish in subcloning a gene into an expression vector, through purification of the recombinant protein. The third edition has been completely re-written, with new laboratory exercises and all new illustrations and text, designed for a typical 15-week semester, rather than a 4-week intensive course. The "project approach to experiments was maintained: students still follow a cloning project through to completion, culminating in the purification of recombinant protein. It takes advantage of the enhanced green fluorescent protein - students can actually visualize positive clones following IPTG induction. - Cover basic concepts and techniques used in molecular biology research labs - Student-tested labs proven successful in a real classroom laboratories - Exercises simulate a cloning project that would be performed in a real research lab - "Project" approach to experiments gives students an overview of the entire process - Prep-list appendix contains necessary recipes and catalog numbers, providing staff with detailed instructions




Practical Handbook of the Biology and Molecular Diversity of Trichoderma Species from Tropical Regions


Book Description

This book analyzes the right pathway to solve the controversial identifications of some Trichoderma species on the basis of sampling procedures, slide culture techniques, macroscopic and microscopic analysis, and molecular tools. Most species of the genus Trichoderma grow rapidly in artificial culture and produce large numbers of small green or white conidia from conidiogenous cells located at the ends of conidiophores. The morphological characters are reported to be variable to a certain degree in their color, shape of conidia, conidiophore, pustules, and phialade. These characteristics allow a comparatively easy means of identification of Trichoderma as a genus but the species concept is difficult to deduce and there is considerable confusion over the application of specific names. This work provides an essential link between data and taxa as a means to verify the taxonomic characters of the strains sequenced, and macroscopic and microscopic characteristics. Otherwise, a species level identification study cannot be corrected or uncorrected, and the user has to rely on the person perhaps making a mis-identification.




Handbook of Biology


Book Description

Biology of higher level has too many concept and remembering all them on tips all the time is not an easy task. Handbook of Biology is an important, useful and compact reference book suitable for everyday study, problem solving or exam revision for class XI – XII, Medical entrances and other medical Competitive. This book is a multi-purpose quick revision resource that contains almost all key notes, Diagrams, Flow Charts, Terms and Definitions that all students & professionals in biology will want to have this essential reference book within easy reach. Its unique format displays flow charts & diagrams clearly and places them in the context and crisply identifies describes all the variables involved, summary about every equation and formula that one might want while learning biology. A stimulating and crisp extract of fundamental biology is to be enjoyed by the beginners and experts equally. The book is best- selling from its first edition and one of the most useful books of its type. Table of contents The Living World, Biology Classification, Plant Kingdom, Animal Kingdom, Morphology of Flowering Plants, Anatomy of Flowering Plants, Structural Organisation in Animals, Cell: The Unit of Life, Biomolecules, Cell Cycle and Cell Division, Transport in Plants, Photosynthesis in Higher Plants, Respiration in Plants, Plant Growth and Development, Digestion and Absorption, Breathing and Exchange of Gases, Excretory Products and Their Elimination, Locomotion and Movement, Neural Control and Coordination, Chemical Coordination and Integration, Reproduction in Organisms, Sexual Reproduction in Flowering Plants, Human Reproduction, Reproductive Health, Principles of Inheritance and Variation, Molecular Basis of Inheritance, Evolution, Human Health and Diseases, Strategies for Enhancement in Food Production, Microbes in Human Welfare, Biotechnology: Principles and Processes, Biotechnology and Its Applications, Organisms and Population, Ecosystem, Biodiversity and Conversation, Environmental Issues, Appendix.




Lab Ref


Book Description

"The first Lab Ref volume compiled recipes and reference data drawn from a selection of our manuals and was intended to save time and spare frustration." ... "In the same spirit, Lab Ref 2 again assembles in one place a new selection of reference information that should maximize the volume's value in a crowded laboratory environment."--Note.




Handbook of Molecular and Cellular Methods in Biology and Medicine


Book Description

Since the publication of the best-selling Handbook of Molecular and Cellular Methods in Biology and Medicine, the field of biology has experienced several milestones. Genome sequencing of higher eukaryotes has progressed at an unprecedented speed. Starting with baker's yeast (Saccharomyces cerevisiae), organisms sequenced now include human (Homo sa




Handbook of Molecular Biotechnology


Book Description

With a history that likely dates back to the dawn of human civilization more than 10,000 years ago, and a record that includes the domestication and selective breeding of plants and animals, the harnessing of fermentation process for bread, cheese, and brewage production, and the development of vaccines against infectious diseases, biotechnology has acquired a molecular focus during the 20th century, particularly following the resolution of DNA double helix in 1953, and the publication of DNA cloning protocol in 1973, and transformed our concepts and practices in disease diagnosis, treatment and prevention, pharmaceutical and industrial manufacturing, animal and plant industry, and food processing. While molecular biotechnology offers unlimited opportunities for improving human health and well-being, animal welfare, agricultural innovation and environmental conservation, a dearth of high quality books that have the clarity of laboratory manuals without distractive procedural details and the thoroughness of well-conversed textbooks appears to dampen the enthusiasm of aspiring students. In attempt to fill this glaring gap, Handbook of Molecular Biotechnology includes four sections, with the first three presenting in-depth coverage on DNA, RNA and protein technologies, and the fourth highlighting their utility in biotechnology. Recognizing the importance of logical reasoning and experimental verification over direct observation and simple description in biotechnological research and development, the Introduction provides pertinent discussions on key strategies (i.e., be first, be better, and be different), effective thinking (lateral, parallel, causal, reverse, and random), and experimental execution, which have proven invaluable in helping advance research projects, evaluate and prepare research reports, and enhance other scientific endeavors. Key features Presents state-of-the-art reviews on DNA, RNA and protein technologies and their biotechnological applications Discusses key strategies, effective thinking, and experimental execution for scientific research and development Fills the gap left by detailed-ridden laboratory manuals and insight-lacking standard textbooks Includes expert contributions from international scientists at the forefront of molecular biotechnology research and development Written by international scientists at the forefront of molecular biotechnology research and development, chapters in this volume cover the histories, principles, and applications of individual techniques/technologies, and constitute stand-alone, yet interlinked lectures that strive to educate as well as to entertain. Besides providing an informative textbook for tertiary students in molecular biotechnology and related fields, this volume serves as an indispensable roadmap for novice scientists in their efforts to acquire innovative skills and establish solid track records in molecular biotechnology, and offers a contemporary reference for scholars, educators, and policymakers wishing to keep in touch with recent developments in molecular biotechnology.




A Bioinformatics Guide for Molecular Biologists


Book Description

Informatics can vastly assist progress in research and development in cell and molecular biology and biomedicine. However, many investigators are either unaware of the ways in which informatics can improve their research or find it inaccessible due to a feeling of "informatics anxiety." This sense of apprehension results from improper communication of the principles behind these approaches and of the value of the many tools available. In fact, many researchers are inherently distrustful of these tools. A more complete understanding of bioinformatics offered in A Bioinformatics Guide for Molecular Biologists will allow the reader to become comfortable with these techniques, encouraging their use-thus helping to make sense of the vast accumulation of data. To make these concepts more accessible, the editors approach the field of bioinformatics from the viewpoint of a molecular biologist, (1) arming the biologist with a basic understanding of the fundamental concepts in the field, (2) presenting approaches for using the tools from the standpoint of the data for which they are created, and (3) showing how the field of informatics is quickly adapting to the advancements in biology and biomedical technologies. All concepts are paired with recommendations for the appropriate programming environment and tools best suited to solve the particular problem at hand. It is a must-read for those interested in learning informatics techniques required for successful research and development in the laboratory.