Handbook of Truly Concurrent Process Algebra


Book Description

Handbook of Truly Concurrent Process Algebra provides readers with a detailed and in-depth explanation of the algebra used for concurrent computing. This complete handbook is divided into five Parts: Algebraic Theory for Reversible Computing, Probabilistic Process Algebra for True Concurrency, Actors – A Process Algebra-Based Approach, Secure Process Algebra, and Verification of Patterns. The author demonstrates actor models which are captured using the following characteristics: Concurrency, Asynchrony, Uniqueness, Concentration, Communication Dependency, Abstraction, and Persistence. Truly concurrent process algebras are generalizations of the corresponding traditional process algebras. Handbook of Truly Concurrent Process Algebra introduces several advanced extensions and applications of truly concurrent process algebras. Part 1: Algebraic Theory for Reversible Computing provides readers with all aspects of algebraic theory for reversible computing, including the basis of semantics, calculi for reversible computing, and axiomatization for reversible computing. Part 2: Probabilistic Process Algebra for True Concurrency provides readers with all aspects of probabilistic process algebra for true concurrency, including the basis of semantics, calculi for probabilistic computing, axiomatization for probabilistic computing, as well as mobile calculi for probabilistic computing. Part 3: Actors - A Process Algebra-Based Approach bridges the two concurrent models, process algebra and actors, by capturing the actor model in the following characteristics: Concurrency, Asynchrony, Uniqueness, Concentration, Communication Dependency, Abstraction, and Persistence. Part 4: Secure Process Algebra demonstrates the advantages of process algebra in verifying security protocols – it has a firmly theoretic foundation and rich expressive powers to describe security protocols. Part 5: Verification of Patterns formalizes software patterns according to the categories of the patterns and verifies the correctness of patterns based on truly concurrent process algebra. Every pattern is detailed according to a regular format to be understood and utilized easily, which includes introduction to a pattern and its verifications. Patterns of the vertical domains are also provided, including the domains of networked objects and resource management. To help readers develop and implement the software patterns scientifically, the pattern languages are also presented. - Presents all aspects of full algebraic reversible computing, including the basis of semantics, calculi for full reversible computing, and axiomatization for full reversible computing - Introduces algebraic properties and laws for probabilistic computing, one of the foundational concepts of Computer Science - Presents the calculi for probabilistic computing, including the basis of semantics and calculi for reversible computing




Handbook of Process Algebra


Book Description

Process Algebra is a formal description technique for complex computer systems, especially those involving communicating, concurrently executing components. It is a subject that concurrently touches many topic areas of computer science and discrete math, including system design notations, logic, concurrency theory, specification and verification, operational semantics, algorithms, complexity theory, and, of course, algebra.This Handbook documents the fate of process algebra since its inception in the late 1970's to the present. It is intended to serve as a reference source for researchers, students, and system designers and engineers interested in either the theory of process algebra or in learning what process algebra brings to the table as a formal system description and verification technique. The Handbook is divided into six parts spanning a total of 19 self-contained Chapters. The organization is as follows. Part 1, consisting of four chapters, covers a broad swath of the basic theory of process algebra. Part 2 contains two chapters devoted to the sub-specialization of process algebra known as finite-state processes, while the three chapters of Part 3 look at infinite-state processes, value-passing processes and mobile processes in particular. Part 4, also three chapters in length, explores several extensions to process algebra including real-time, probability and priority. The four chapters of Part 5 examine non-interleaving process algebras, while Part 6's three chapters address process-algebra tools and applications.




Truly Concurrent Process Algebra With Localities


Book Description

Truly Concurrent Process Algebra with Localities introduces localities into truly concurrent process algebras. The book explores all aspects of localities in truly concurrent process algebras, such as Calculus for True Concurrency (CTC), which is a generalization of CCS for true concurrency, Algebra of Parallelism for True Concurrency (APTC), which is a generalization of ACP for true concurrency, and ? Calculus for True Concurrency (?). Together, these approaches capture the so-called true concurrency based on truly concurrent bisimilarities, such as pomset bisimilarity, step bisimilarity, history-preserving (hp-) bisimilarity and hereditary history-preserving (hhp-) bisimilarity.This book provides readers with all aspects of algebraic theory for localities, including the basis of semantics, calculi for static localities, axiomatization for static localities, as well as calculi for dynamic localities and axiomatization for dynamic localities. - Introduces algebraic properties and laws for localities, one of the important concepts of software engineering for concurrent computing systems - Discusses algebraic theory for static localities and dynamic localities, including the basis of semantics, calculi, and axiomatization - Presents all aspects of localities in truly concurrent process algebras, including Calculus for True Concurrency (CTC), Algebra of Parallelism for True Concurrency (APTC), and Process Calculus for True Concurrency (?)




Process Algebras for Petri Nets


Book Description

This book deals with the problem of finding suitable languages that can represent specific classes of Petri nets, the most studied and widely accepted model for distributed systems. Hence, the contribution of this book amounts to the alphabetization of some classes of distributed systems. The book also suggests the need for a generalization of Turing computability theory. It is important for graduate students and researchers engaged with the concurrent semantics of distributed communicating systems. The author assumes some prior knowledge of formal languages and theoretical computer science.




Validation of Stochastic Systems


Book Description

This tutorial volume presents a coherent and well-balanced introduction to the validation of stochastic systems; it is based on a GI/Dagstuhl research seminar. Supervised by the seminar organizers and volume editors, established researchers in the area as well as graduate students put together a collection of articles competently covering all relevant issues in the area. The lectures are organized in topical sections on: modeling stochastic systems, model checking of stochastic systems, representing large state spaces, deductive verification of stochastic systems.




Mathematical Reviews


Book Description




Programming Languages and Systems - Esop'96


Book Description

This book presents the refereed proceedings of the Sixth European Symposium on Programming, ESOP '96, held in Linköping, Sweden, in April 1996. The 23 revised full papers included were selected from a total of 63 submissions; also included are invited papers by Cliff B. Jones and by Simon L. Peyton Jones. The book is devoted to fundamental issues in the specification, analysis, and implementation of programming languages and systems; the emphasis is on research issues bridging the gap between theory and practice. Among the topics addressed are software specification and verification, programming paradigms, program semantics, advanced type systems, program analysis, program transformation, and implementation techniques.




Computer Science Logic


Book Description

The 1999 Annual Conference of the European Association for Computer Science Logic, CSL’99, was held in Madrid, Spain, on September 20-25, 1999. CSL’99 was the 13th in a series of annual meetings, originally intended as Internat- nal Workshops on Computer Science Logic, and the 8th to be held as the - nual Conference of the EACSL. The conference was organized by the Computer Science Departments (DSIP and DACYA) at Universidad Complutense in M- rid (UCM). The CSL’99 program committee selected 34 of 91 submitted papers for p- sentation at the conference and publication in this proceedings volume. Each submitted paper was refereed by at least two, and in almost all cases, three di erent referees. The second refereeing round, previously required before a - per was accepted for publication in the proceedings, was dropped following a decision taken by the EACSL membership meeting held during CSL’98 (Brno, Czech Republic, August 25, 1998).




Handbook of the Tutte Polynomial and Related Topics


Book Description

The Tutte Polynomial touches on nearly every area of combinatorics as well as many other fields, including statistical mechanics, coding theory, and DNA sequencing. It is one of the most studied graph polynomials. Handbook of the Tutte Polynomial and Related Topics is the first handbook published on the Tutte Polynomial. It consists of thirty-four chapters written by experts in the field, which collectively offer a concise overview of the polynomial’s many properties and applications. Each chapter covers a different aspect of the Tutte polynomial and contains the central results and references for its topic. The chapters are organized into six parts. Part I describes the fundamental properties of the Tutte polynomial, providing an overview of the Tutte polynomial and the necessary background for the rest of the handbook. Part II is concerned with questions of computation, complexity, and approximation for the Tutte polynomial; Part III covers a selection of related graph polynomials; Part IV discusses a range of applications of the Tutte polynomial to mathematics, physics, and biology; Part V includes various extensions and generalizations of the Tutte polynomial; and Part VI provides a history of the development of the Tutte polynomial. Features Written in an accessible style for non-experts, yet extensive enough for experts Serves as a comprehensive and accessible introduction to the theory of graph polynomials for researchers in mathematics, physics, and computer science Provides an extensive reference volume for the evaluations, theorems, and properties of the Tutte polynomial and related graph, matroid, and knot invariants Offers broad coverage, touching on the wide range of applications of the Tutte polynomial and its various specializations




Formal Methods and Software Engineering


Book Description

This book constitutes the refereed proceedings of the 4th International Conference on Formal Engineering methods, ICFEM 2002, held in Shanghai, China, in October 2002. The 43 revised full papers and 16 revised short papers presented together with 5 invited contributions were carefully reviewed and selected from a total of 108 submissions. The papers are organized in topical sections on component engineering and software architecture, method integration, specification techniques and languages, tools and environments, refinement, applications, validation and verification, UML, and semantics.