Efficient Processing of Deep Neural Networks


Book Description

This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.







Embedded Deep Learning


Book Description

This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning. Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices; Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy – applications, algorithms, hardware architectures, and circuits – supported by real silicon prototypes; Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations; Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization’s implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts.




Domain-Specific Computer Architectures for Emerging Applications


Book Description

With the end of Moore’s Law, domain-specific architecture (DSA) has become a crucial mode of implementing future computing architectures. This book discusses the system-level design methodology of DSAs and their applications, providing a unified design process that guarantees functionality, performance, energy efficiency, and real-time responsiveness for the target application. DSAs often start from domain-specific algorithms or applications, analyzing the characteristics of algorithmic applications, such as computation, memory access, and communication, and proposing the heterogeneous accelerator architecture suitable for that particular application. This book places particular focus on accelerator hardware platforms and distributed systems for various novel applications, such as machine learning, data mining, neural networks, and graph algorithms, and also covers RISC-V open-source instruction sets. It briefly describes the system design methodology based on DSAs and presents the latest research results in academia around domain-specific acceleration architectures. Providing cutting-edge discussion of big data and artificial intelligence scenarios in contemporary industry and typical DSA applications, this book appeals to industry professionals as well as academicians researching the future of computing in these areas.




Thinking Machines


Book Description

Thinking Machines: Machine Learning and Its Hardware Implementation covers the theory and application of machine learning, neuromorphic computing and neural networks. This is the first book that focuses on machine learning accelerators and hardware development for machine learning. It presents not only a summary of the latest trends and examples of machine learning hardware and basic knowledge of machine learning in general, but also the main issues involved in its implementation. Readers will learn what is required for the design of machine learning hardware for neuromorphic computing and/or neural networks.This is a recommended book for those who have basic knowledge of machine learning or those who want to learn more about the current trends of machine learning. - Presents a clear understanding of various available machine learning hardware accelerator solutions that can be applied to selected machine learning algorithms - Offers key insights into the development of hardware, from algorithms, software, logic circuits, to hardware accelerators - Introduces the baseline characteristics of deep neural network models that should be treated by hardware as well - Presents readers with a thorough review of past research and products, explaining how to design through ASIC and FPGA approaches for target machine learning models - Surveys current trends and models in neuromorphic computing and neural network hardware architectures - Outlines the strategy for advanced hardware development through the example of deep learning accelerators




Embedded Devices and Internet of Things


Book Description

The text comprehensively discusses machine-to-machine communication in real-time, low-power system design and estimation using field programmable gate arrays, PID, hardware, accelerators, and software integration for service applications. It further covers the recent advances in embedded computing and IoT for healthcare systems. The text explains the use of low-power devices such as microcontrollers in executing deep neural networks, and other machine learning techniques. This book: Discusses the embedded system software and hardware methodologies for system-on-chip and FPGA Illustrates low-power embedded applications, AI-based system design, PID control design, and CNN hardware design Highlights the integration of advanced 5G communication technologies with embedded systems Explains weather prediction modeling, embedded machine learning, and RTOS Highlights the significance of machine-learning techniques on the Internet of Things (IoT), real-time embedded system design, communication, and healthcare applications, and provides insights on IoT applications in education, fault attacks, security concerns, AI integration, banking, blockchain, intelligent tutoring systems, and smart technologies It is primarily written for senior undergraduates, graduate students, and academic researchers in the fields of electrical engineering, electronics and communications engineering, and computer engineering.




High Performance Computing for Big Data


Book Description

High-Performance Computing for Big Data: Methodologies and Applications explores emerging high-performance architectures for data-intensive applications, novel efficient analytical strategies to boost data processing, and cutting-edge applications in diverse fields, such as machine learning, life science, neural networks, and neuromorphic engineering. The book is organized into two main sections. The first section covers Big Data architectures, including cloud computing systems, and heterogeneous accelerators. It also covers emerging 3D IC design principles for memory architectures and devices. The second section of the book illustrates emerging and practical applications of Big Data across several domains, including bioinformatics, deep learning, and neuromorphic engineering. Features Covers a wide range of Big Data architectures, including distributed systems like Hadoop/Spark Includes accelerator-based approaches for big data applications such as GPU-based acceleration techniques, and hardware acceleration such as FPGA/CGRA/ASICs Presents emerging memory architectures and devices such as NVM, STT- RAM, 3D IC design principles Describes advanced algorithms for different big data application domains Illustrates novel analytics techniques for Big Data applications, scheduling, mapping, and partitioning methodologies Featuring contributions from leading experts, this book presents state-of-the-art research on the methodologies and applications of high-performance computing for big data applications. About the Editor Dr. Chao Wang is an Associate Professor in the School of Computer Science at the University of Science and Technology of China. He is the Associate Editor of ACM Transactions on Design Automations for Electronics Systems (TODAES), Applied Soft Computing, Microprocessors and Microsystems, IET Computers & Digital Techniques, and International Journal of Electronics. Dr. Chao Wang was the recipient of Youth Innovation Promotion Association, CAS, ACM China Rising Star Honorable Mention (2016), and best IP nomination of DATE 2015. He is now on the CCF Technical Committee on Computer Architecture, CCF Task Force on Formal Methods. He is a Senior Member of IEEE, Senior Member of CCF, and a Senior Member of ACM.




Hardware Accelerator Systems for Artificial Intelligence and Machine Learning


Book Description

Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Volume 122 delves into arti?cial Intelligence and the growth it has seen with the advent of Deep Neural Networks (DNNs) and Machine Learning. Updates in this release include chapters on Hardware accelerator systems for artificial intelligence and machine learning, Introduction to Hardware Accelerator Systems for Artificial Intelligence and Machine Learning, Deep Learning with GPUs, Edge Computing Optimization of Deep Learning Models for Specialized Tensor Processing Architectures, Architecture of NPU for DNN, Hardware Architecture for Convolutional Neural Network for Image Processing, FPGA based Neural Network Accelerators, and much more. Updates on new information on the architecture of GPU, NPU and DNN Discusses In-memory computing, Machine intelligence and Quantum computing Includes sections on Hardware Accelerator Systems to improve processing efficiency and performance




Emergent Converging Technologies and Biomedical Systems


Book Description

The book contains proceedings of the International Conference on Emergent Converging Technologies and Biomedical Systems ETBS 2023. It includes papers on wireless multimedia networks, green wireless networks, electric vehicles, biomedical signal processing, and instrumentation, wearable sensors for health care monitoring, biomedical imaging, and bio-materials, modeling, and simulation in medicine biomedical, and health informatics. The book serves as a useful guide for educators, researchers, and developers working in the areas of signal processing, imaging, computing, instrumentation, artificial intelligence, and their related applications. This book also provides support and aid to the researchers involved in designing the latest advancements in healthcare technologies.




Applied Reconfigurable Computing. Architectures, Tools, and Applications


Book Description

This book constitutes the proceedings of the 16th International Symposium on Applied Reconfigurable Computing, ARC 2020, held in Toledo, Spain, in April 2020. The 18 full papers and 11 poster presentations presented in this volume were carefully reviewed and selected from 40 submissions. The papers are organized in the following topical sections: design methods & tools; design space exploration & estimation techniques; high-level synthesis; architectures; applications.