Heat Transfer and Fluid Flow in Nuclear Systems


Book Description

Heat Transfer and Fluid in Flow Nuclear Systems discusses topics that bridge the gap between the fundamental principles and the designed practices. The book is comprised of six chapters that cover analysis of the predicting thermal-hydraulics performance of large nuclear reactors and associated heat-exchangers or steam generators of various nuclear systems. Chapter 1 tackles the general considerations on thermal design and performance requirements of nuclear reactor cores. The second chapter deals with pressurized subcooled light water systems, and the third chapter covers boiling water reactor systems. Chapter 4 tackles liquid metal cooled systems, while Chapter 5 discusses helium cooled systems. The last chapter deals with heat-exchangers and steam generators. The book will be of great help to engineers, scientists, and graduate students concerned with thermal and hydraulic problems.




Thermal-Hydraulic Analysis of Nuclear Reactors


Book Description

This revised text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. The book begins with fundamental definitions of units and dimensions, thermodynamic variables and the Laws of Thermodynamics progressing to sections on specific applications of the Brayton and Rankine cycles for power generation and projected reactor systems design issues. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play. There have been significant new findings for intercooled systems since the previous edition published and they will be included in this volume. New technology plans for using a Nuclear Air-Brayton as a storage system for a low carbon grid are presented along with updated component sizes and performance criteria for Small Modular Reactors. Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors.




Nuclear Systems Volume II


Book Description

This book provides advanced coverage of a wide variety of thermal fluid systems and technologies in nuclear power plants, including discussions of the latest reactor designs and their thermal/fluid technologies. Beyond the thermal hydraulic design and analysis of the core of a nuclear reactor, the book covers other components of nuclear power plants, such as the pressurizer, containment, and the entire primary coolant system. Placing more emphasis on the appropriate models for small-scale resolution of the velocity and temperature fields through computational fluid mechanics, the book shows how this enhances the accuracy of predicted operating conditions in nuclear plants. It introduces considerations of the laws of scaling and uncertainty analysis, along with a wider coverage of the phenomena encountered during accidents. FEATURES Discusses fundamental ideas for various modeling approaches for the macro- and microscale flow conditions in reactors Covers specific design considerations, such as natural convection and core reliability Enables readers to better understand the importance of safety considerations in thermal engineering and analysis of modern nuclear plants Features end-of-chapter problems Includes a solutions manual for adopting instructors This book serves as a textbook for advanced undergraduate and graduate students taking courses in nuclear engineering and studying thermal/hydraulic systems in nuclear power plants.




Nuclear Systems Volume I


Book Description

Offers rigorous coverage of nuclear power generation fundamentals. Provides description and analysis of the latest nuclear power plant designs and technologies. Includes extensive examples in each chapter to illustrate the analysis methods, which are also presented. Includes program code to demonstrate computer analysis of nuclear power generation. Provides an integration of fluid flow and heat transfer, as applied to single- and two-phase coolants.




Nuclear Systems: Thermal hydraulic fundamentals


Book Description

Provides an examination of nuclear systems focusing on thermal hydraulic design and analysis of the nuclear core. The coverage includes fluid flow and heat transfer, various reactor types and energy source distribution.




Nuclear Systems


Book Description

Nuclear power is in the midst of a generational change—with new reactor designs, plant subsystems, fuel concepts, and other information that must be explained and explored—and after the 2011 Japan disaster, nuclear reactor technologies are, of course, front and center in the public eye. Written by leading experts from MIT, Nuclear Systems Volume I: Thermal Hydraulic Fundamentals, Second Edition provides an in-depth introduction to nuclear power, with a focus on thermal hydraulic design and analysis of the nuclear core. A close examination of new developments in nuclear systems, this book will help readers—particularly students—to develop the knowledge and design skills required to improve the next generation of nuclear reactors. Includes a CD-ROM with Extensive Tables for Computation Intended for experts and senior undergraduate/early-stage graduate students, the material addresses: Different types of reactors Core and plant performance measures Fission energy generation and deposition Conservation equations Thermodynamics Fluid flow Heat transfer Imparting a wealth of knowledge, including their longtime experience with the safety aspects of nuclear installations, authors Todreas and Kazimi stress the integration of fluid flow and heat transfer, various reactor types, and energy source distribution. They cover recent nuclear reactor concepts and systems, including Generation III+ and IV reactors, as well as new power cycles. The book features new chapter problems and examples using concept parameters, and a solutions manual is available with qualifying course adoption.




Nuclear Reactor Thermal Hydraulics


Book Description

The nuclear power industry in the world today -- The pressurized water reactor -- The boiling water reactor -- Fast reactors, gas reactors, and military reactors -- Thermal energy production in nuclear power plants -- The laws of thermodynamics -- Thermodynamic properties and equations of state -- The nuclear steam supply system -- Reactor thermal cycles -- The laws of heat transfer -- Heat removal from nuclear fuel rods -- Time dependent nuclear heat transfer -- Nuclear reactor fluid mechanics -- Fluid statics and fluid dynamics -- The conservation equations of fluid mechanics -- Single phase flow in nuclear power plants -- Laminar and turbulent flow with friction -- Core and fuel assembly fluid flow -- Reactor coolants, coolant pumps, and power turbines -- Single phase nuclear heat transfer -- Correlations for single phase nuclear heat transfer -- Natural convection in nuclear power plants -- Fundamentals of two phase flow in nuclear power plants -- Two phase nuclear heat transfer -- Heat transfer correlations for advanced two phase nuclear heat transfer -- Core temperature fields -- Nuclear hot channel factors, the critical heat flux, and the dnbr -- Thermal design limits, operating limits, and safety limits -- Equilibrium and non-equilibrium flows, critical flow, and choke flow -- Reactor accidents, dbas, and locas -- Flow oscillations, density waves, and hydrodynamic instabilities -- Containment buildings and their function -- particle transport and entrainment during reactor accidents -- Response of a containment building to a reactor LOCA.




Nuclear Reactor Thermal Hydraulics


Book Description

Nuclear Thermal-Hydraulic Systems provides a comprehensive approach to nuclear reactor thermal-hydraulics, reflecting the latest technologies, reactor designs, and safety considerations. The text makes extensive use of color images, internet links, computer graphics, and other innovative techniques to explore nuclear power plant design and operation. Key fluid mechanics, heat transfer, and nuclear engineering concepts are carefully explained, and supported with worked examples, tables, and graphics. Intended for use in one or two semester courses, the text is suitable for both undergraduate and graduate students. A complete Solutions Manual is available for professors adopting the text.




Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors


Book Description

Thermal Hydraulics Aspects of Liquid Metal cooled Nuclear Reactors is a comprehensive collection of liquid metal thermal hydraulics research and development for nuclear liquid metal reactor applications. A deliverable of the SESAME H2020 project, this book is written by top European experts who discuss topics of note that are supplemented by an international contribution from U.S. partners within the framework of the NEAMS program under the U.S. DOE. This book is a convenient source for students, professionals and academics interested in liquid metal thermal hydraulics in nuclear applications. In addition, it will also help newcomers become familiar with current techniques and knowledge. Presents the latest information on one of the deliverables of the SESAME H2020 project Provides an overview on the design and history of liquid metal cooled fast reactors worldwide Describes the challenges in thermal hydraulics related to the design and safety analysis of liquid metal cooled fast reactors Includes the codes, methods, correlations, guidelines and limitations for liquid metal fast reactor thermal hydraulic simulations clearly Discusses state-of-the-art, multi-scale techniques for liquid metal fast reactor thermal hydraulics applications




Heat Transfer and Fluid Flow


Book Description

A total of 2519 annotated references to the unclassified report literature is presented. Subjects covered under heat transfer and fluid flow include radioinduced heating; boiling; boiler, evaporators, pump, and heat exchanger design; hydrodynamics; coolants and their properties; thermal and flow instrumentation; high temperature materials; thermal properties of materials; and thermal insulation. Subjects covered less completely include thermodynamics; aerodynamics; high temperature corrosion; corrosion specific to heat transfer systems; erosion; mass transfer; corrosion film formation and effects; coolant processing and radioactivity; radiation effects of heat transfer materials; and pertinent data of thermonuclear processes. Subject, report number availability, and author indexes are given.