Heisenberg and the Interpretation of Quantum Mechanics


Book Description

Werner Heisenberg was a pivotal figure in the development of quantum mechanics in the 1920s, and also one of its most insightful interpreters. Together with Bohr, Heisenberg forged what is commonly known as the 'Copenhagen interpretation'. Yet Heisenberg's philosophical viewpoint did not remain fixed over time, and his interpretation of quantum mechanics differed in several crucial respects from Bohr's. This book traces the development of Heisenberg's philosophy of quantum mechanics, beginning with his positivism of the mid-1920s, through his neo-Kantian reading of Bohr in the 1930s, and culminating with his 'linguistic turn' in the 1940s and 1950s. It focuses on the nature of this transformation in Heisenberg's thought and its wider philosophical context, which have up until now not received the attention they deserve. This new perspective on Heisenberg's interpretation of quantum mechanics will interest researchers and graduate students in the history and philosophy of twentieth-century physics.




Heisenberg and the Interpretation of Quantum Mechanics


Book Description

New perspective on Heisenberg's interpretation of quantum mechanics for researchers and graduate students in the history and philosophy of physics.




Heisenberg and the Interpretation of Quantum Mechanics


Book Description

New perspective on Heisenberg's interpretation of quantum mechanics for researchers and graduate students in the history and philosophy of physics.




The Physical Principles of the Quantum Theory


Book Description

Nobel Laureate discusses quantum theory, uncertainty, wave mechanics, work of Dirac, Schroedinger, Compton, Einstein, others. "An authoritative statement of Heisenberg's views on this aspect of the quantum theory." — Nature.




Einstein and Heisenberg


Book Description

This is a fascinating account of two great scientists of the 20th century: Einstein and Heisenberg, discoverers, respectively, of the theory of relativity and quantum mechanics. It connects the history of modern physics to the life stories of these two extraordinary physicists.These discoveries laid the foundation of modern physics, without which our digitized world of computers, satellites, and innovative materials would not be possible. This book also describes in comprehensible terms the complicated science underlying the two discoveries.The twin biography highlights the parallels and differences of these two luminaries, showing how their work shaped the 20th century into the century of physics.




The Quantum Handshake


Book Description

This book shines bright light into the dim recesses of quantum theory, where the mysteries of entanglement, nonlocality, and wave collapse have motivated some to conjure up multiple universes, and others to adopt a "shut up and calculate" mentality. After an extensive and accessible introduction to quantum mechanics and its history, the author turns attention to his transactional model. Using a quantum handshake between normal and time-reversed waves, this model provides a clear visual picture explaining the baffling experimental results that flow daily from the quantum physics laboratories of the world. To demonstrate its powerful simplicity, the transactional model is applied to a collection of counter-intuitive experiments and conceptual problems.




Understanding Quantum Mechanics


Book Description

Here Roland Omnès offers a clear, up-to-date guide to the conceptual framework of quantum mechanics. In an area that has provoked much philosophical debate, Omnès has achieved high recognition for his Interpretation of Quantum Mechanics (Princeton 1994), a book for specialists. Now the author has transformed his own theory into a short and readable text that enables beginning students and experienced physicists, mathematicians, and philosophers to form a comprehensive picture of the field while learning about the most recent advances. This new book presents a more streamlined version of the Copenhagen interpretation, showing its logical consistency and completeness. The problem of measurement is a major area of inquiry, with the author surveying its history from Planck to Heisenberg before describing the consistent-histories interpretation. He draws upon the most recent research on the decoherence effect (related to the modern resolution of the famous Schrödinger's cat problem) and an exact formulation of the correspondence between quantum and particle physics (implying a derivation of classical determinism from quantum probabilism). Interpretation is organized with the help of a universal and sound language using so-called consistent histories. As a language and a method, it can now be shown to be free of ambiguity and it makes interpretation much clearer and closer to common sense.




From Fractals And Cellular Automata To Biology: Information As Order Hidden Within Chance


Book Description

The didactical level of exposition, together with many astonishing images and animations, accompanied by the related simple computer programming codes (in Python and POV-Ray languages) make this book an extremely and unique useful tool to test the power of algorithmic information in generating ordered structure models (2D and 3D) like regular geometric shapes, complex shapes like fractals and cellular automata, and biological systems as the organs of a living body. Informational biologists besides mathematicians and physicists of complexity may learn to test their own capabilities in programming and modelling ordered structures starting from random initial conditions at different scale of each system: from elementary particles, to biological systems, to galaxies and the whole universe. Moreover the philosophical comments comparing some aspects of modern information theory to the Aristotelian notion of 'form are very appealing also for the epistemologist and the philosopher involved in complexity matters.




The Strange World of Quantum Mechanics


Book Description

This is an exceptionally accessible, accurate, and non-technical introduction to quantum mechanics. After briefly summarizing the differences between classical and quantum behaviour, this engaging account considers the Stern-Gerlach experiment and its implications, treats the concepts of probability, and then discusses the Einstein-Podolsky-Rosen paradox and Bell's theorem. Quantal interference and the concept of amplitudes are introduced and the link revealed between probabilities and the interference of amplitudes. Quantal amplitude is employed to describe interference effects. Final chapters explore exciting new developments in quantum computation and cryptography, discover the unexpected behaviour of a quantal bouncing-ball, and tackle the challenge of describing a particle with no position. Thought-provoking problems and suggestions for further reading are included. Suitable for use as a course text, The Strange World of Quantum Mechanics enables students to develop a genuine understanding of the domain of the very small. It will also appeal to general readers seeking intellectual adventure.




Epistemology and Probability


Book Description

This book offers an exploration of the relationships between epistemology and probability in the work of Niels Bohr, Werner Heisenberg, and Erwin Schro- ̈ dinger, and in quantum mechanics and in modern physics as a whole. It also considers the implications of these relationships and of quantum theory itself for our understanding of the nature of human thinking and knowledge in general, or the ‘‘epistemological lesson of quantum mechanics,’’ as Bohr liked 1 to say. These implications are radical and controversial. While they have been seen as scientifically productive and intellectually liberating to some, Bohr and Heisenberg among them, they have been troublesome to many others, such as Schro ̈ dinger and, most prominently, Albert Einstein. Einstein famously refused to believe that God would resort to playing dice or rather to playing with nature in the way quantum mechanics appeared to suggest, which is indeed quite different from playing dice. According to his later (sometime around 1953) remark, a lesser known or commented upon but arguably more important one: ‘‘That the Lord should play [dice], all right; but that He should gamble according to definite rules [i. e. , according to the rules of quantum mechanics, rather than 2 by merely throwing dice], that is beyond me. ’’ Although Einstein’s invocation of God is taken literally sometimes, he was not talking about God but about the way nature works. Bohr’s reply on an earlier occasion to Einstein’s question 1 Cf.