Mechanical Properties and Working of Metals and Alloys


Book Description

This book is intended to serve as core text or handy reference on two key areas of metallic materials: (i) mechanical behavior and properties evaluated by mechanical testing; and (ii) different types of metal working or forming operations to produce useful shapes. The book consists of 16 chapters which are divided into two parts. The first part contains nine chapters which describe tension (including elastic stress – strain relation, relevant theory of plasticity, and strengthening methods), compression, hardness, bending, torsion – pure shear, impact loading, creep and stress rupture, fatigue, and fracture. The second part is composed of seven chapters and covers fundamentals of mechanical working, forging, rolling, extrusion, drawing of flat strip, round bar, and tube, deep drawing, and high-energy rate forming. The book comprises an exhaustive description of mechanical properties evaluated by testing of metals and metal working in sufficient depth and with reasonably wide coverage. The book is written in an easy-to-understand manner and includes many solved problems. More than 150 numerical problems and many multiple choice questions as exercise along with their answers have also been provided. The mathematical analyses are well elaborated without skipping any intermediate steps. Slab method of analysis or free-body equilibrium approach is used for the analytical treatment of mechanical working processes. For hot working processes, different frictional conditions (sliding, sticking and mixed sticking–sliding) have been considered to estimate the deformation loads. In addition to the slab method of analysis, this book also contains slip-line field theory, its application to the static system, and the steady state motion, Further, this book includes upper-bound theorem, and upper-bound solutions for indentation, compression, extrusion and strip drawing. The book can be used to teach graduate and undergraduate courses offered to students of mechanical, aerospace, production, manufacturing and metallurgical engineering disciplines. The book can also be used for metallurgists and practicing engineers in industry and development courses in the metallurgy and metallic manufacturing industries.




Metallurgical Effects at High Strain Rates


Book Description

A conference on Metallurgical Effects at High Strain Rates was held at Albuquerque, New Mexico, February 5 through 8, 1973, under joint sponsorship of Sandia Laboratories and the Physical Metallurgy Committee of The Metallurgical Society of AIME. This book presents the written proceedings of the meeting. The purpose of the conference was to gather scientists from diverse disciplines and stimulate interdisciplinary discussions on key areas of materials response at high strain rates. In this spirit, it was similar to one of the first highly successful con ferences on this subject held in 1960, in Estes Park, Colorado, on The Response of Metals to High Velocity Deformation. The 1973 conference was able to demonstrate rather directly the increased understanding of high strain rate effects in metals that has evolved over a period of roughly 12 years. In keeping with the interdisciplinary nature of the meeting, the first day was devoted to a tutorial session of invited papers to provide attendees of diverse backgrounds with a common basis of understanding. Sessions were then held with themes centered around key areas of the high strain rate behavior of metals.




A Guide to the Literature on High-velocity Metalworking


Book Description

This report is a guide to the literature on high-velocity metalworking. It consists primarily of abstracts of articles, reports, books, and current research projects on and related to high-velocity metalworking arranged according to technical subject. It covers a survey of the reported work in the field up to about October of 1962. Abstracts of over 700 references have been arranged by subject matter, with cross indexing between subjects. There is also an author index. The eleven major subjects and categories covered in the report are: (1) Energy Sources, (2) Energy Transfer Mediums, (3) Facility Requirements, (4) Tooling Requirements, (5) Equipment Requirements, (6) Forming, (7) Hardening, (8) Explosive Welding, (9) Powder Compaction, (10) Metal Removal, and (11) Material Behavior.




High-Pressure Science and Technology


Book Description

High pressure has become a basic variable in many areas of science and engineering. It extends from disciplines of geophysics and astrophysics through chemistry and physics to those of modern biology, electrical and chemical engineering. This breadth has been recognized for some time, but it was not until the early 1960's that an international group of scientists and engineers established the Association Internationale for Research and Advancement of High Pressure Science and Technology (AIRAPT) for bringing these various aspects of high pressure together at an international conference. The First AIRAPT International High Pressure Conference was held in 1965 in France and has been convened at approximately two to three year intervals since that time. The past four AIRAPT International High Pressure Conferences have been held in Germany, Scotland, Japan and the U.S.S.R. Since the first meeting of this kind, our understanding of high pressure behavior of physical systems has increased greatly.




Explosive Welding, Forming and Compaction


Book Description

The last two decades have seen a steady and impressive development, and eventual industrial acceptance, of the high energy-rate manufact turing techniques based on the utilisation of energy available in an explo sive charge. Not only has it become economically viable to fabricate complex shapes and integrally bonded composites-which otherwise might not have been obtainable easily, if at all-but also a source of reasonably cheap energy and uniquely simple techniques, that often dispense with heavy equipment, have been made available to the engineer and applied scientist. The consolidation of theoretical knowledge and practical experience which we have witnessed in this area of activity in the last few years, combined with the growing industrial interest in the explosive forming, welding and compacting processes, makes it possible and also opportune to present, at this stage, an in-depth review of the state of the art. This book is a compendium of monographic contributions, each one of which represents a particular theoretical or industrial facet of the explosive operations. The contributions come from a number of practising engineers and scientists who seek to establish the present state of knowledge in the areas of the formation and propagation of shock and stress waves in metals, their metallurgical effects, and the methods of experimental assessment of these phenomena.







Explosive Forming of Metals


Book Description







Metal Cutting and Forming


Book Description

Metal cutting is the process of removing unwanted material in the form of chips from a block of metal using cutting tools. Metal cutting is performed on lathe machine, milling machine, drilling machine, shaper, planer and slotter. Grinding is the commonly used finishing process. Metal forming includes a large number of manufacturing processes in which plastic deformation property is used to change the shape and size of metal workpieces. During the process, for deformation purpose, a tool is used which is called as die. It applies stresses to the material to exceed the yield strength of the metal. Due to this the metal deforms into the shape of the die. Generally, the stresses applied to deform the metal plastically are compressive. Sheet metal working is generally associated with press machines and press working. Press working is a chipless manufacturing process by which various components are produced form sheet metal.