Human and Animal Microbiome Engineering


Book Description

Human and Animal Microbiome Engineering provides both basic and detailed information about microbiome engineering for the health enhancement of humans and animal populations. The book provides updated information about current research topics in this emerging field, including microbiome gene therapy, engineered probiotics, and smart living biotic machines for the release of therapeutics. The book is divided into 4 sections covering microbiome engineering application with a focus on future perspectives in human health and enhancement; microbiome engineering in human health and disease including real-world case studies; animal microbiome engineering essentials; and microbiome engineering for livestock improvement. This is the perfect reference for researchers and scientists to further explore the relationship between host and microbiome and discover novel ideas about the concepts of microbiome engineering in the health enhancement of humans and animal populations. - Provides information about the basic and advanced topics of microbiome engineering - Offers a customized combination of microbial engineered based therapies to promote human health - Includes hot topics like fecal microbiota transplantation for the control of Cl. difficile infection, next generation probiotics, and probiotic engineered microbiomes




Environmental Chemicals, the Human Microbiome, and Health Risk


Book Description

A great number of diverse microorganisms inhabit the human body and are collectively referred to as the human microbiome. Until recently, the role of the human microbiome in maintaining human health was not fully appreciated. Today, however, research is beginning to elucidate associations between perturbations in the human microbiome and human disease and the factors that might be responsible for the perturbations. Studies have indicated that the human microbiome could be affected by environmental chemicals or could modulate exposure to environmental chemicals. Environmental Chemicals, the Human Microbiome, and Health Risk presents a research strategy to improve our understanding of the interactions between environmental chemicals and the human microbiome and the implications of those interactions for human health risk. This report identifies barriers to such research and opportunities for collaboration, highlights key aspects of the human microbiome and its relation to health, describes potential interactions between environmental chemicals and the human microbiome, reviews the risk-assessment framework and reasons for incorporating chemicalâ€"microbiome interactions.




The Chemistry of Microbiomes


Book Description

The 21st century has witnessed a complete revolution in the understanding and description of bacteria in eco- systems and microbial assemblages, and how they are regulated by complex interactions among microbes, hosts, and environments. The human organism is no longer considered a monolithic assembly of tissues, but is instead a true ecosystem composed of human cells, bacteria, fungi, algae, and viruses. As such, humans are not unlike other complex ecosystems containing microbial assemblages observed in the marine and earth environments. They all share a basic functional principle: Chemical communication is the universal language that allows such groups to properly function together. These chemical networks regulate interactions like metabolic exchange, antibiosis and symbiosis, and communication. The National Academies of Sciences, Engineering, and Medicine's Chemical Sciences Roundtable organized a series of four seminars in the autumn of 2016 to explore the current advances, opportunities, and challenges toward unveiling this "chemical dark matter" and its role in the regulation and function of different ecosystems. The first three focused on specific ecosystemsâ€"earth, marine, and humanâ€"and the last on all microbiome systems. This publication summarizes the presentations and discussions from the seminars.




Darwinian Agriculture


Book Description

Harnessing evolution for more sustainable agriculture As human populations grow and resources are depleted, agriculture will need to use land, water, and other resources more efficiently and without sacrificing long-term sustainability. Darwinian Agriculture presents an entirely new approach to these challenges, one that draws on the principles of evolution and natural selection. R. Ford Denison shows how both biotechnology and traditional plant breeding can use Darwinian insights to identify promising routes for crop genetic improvement and avoid costly dead ends. Denison explains why plant traits that have been genetically optimized by individual selection—such as photosynthesis and drought tolerance—are bad candidates for genetic improvement. Traits like plant height and leaf angle, which determine the collective performance of plant communities, offer more room for improvement. Agriculturalists can also benefit from more sophisticated comparisons among natural communities and from the study of wild species in the landscapes where they evolved. Darwinian Agriculture reveals why it is sometimes better to slow or even reverse evolutionary trends when they are inconsistent with our present goals, and how we can glean new ideas from natural selection's marvelous innovations in wild species.




The Human Microbiome, Diet, and Health


Book Description

The Food Forum convened a public workshop on February 22-23, 2012, to explore current and emerging knowledge of the human microbiome, its role in human health, its interaction with the diet, and the translation of new research findings into tools and products that improve the nutritional quality of the food supply. The Human Microbiome, Diet, and Health: Workshop Summary summarizes the presentations and discussions that took place during the workshop. Over the two day workshop, several themes covered included: The microbiome is integral to human physiology, health, and disease. The microbiome is arguably the most intimate connection that humans have with their external environment, mostly through diet. Given the emerging nature of research on the microbiome, some important methodology issues might still have to be resolved with respect to undersampling and a lack of causal and mechanistic studies. Dietary interventions intended to have an impact on host biology via their impact on the microbiome are being developed, and the market for these products is seeing tremendous success. However, the current regulatory framework poses challenges to industry interest and investment.




Microbiome Engineering


Book Description

This reference book compiles the latest techniques and applications of microbiome engineering. Microbial communities interact dynamically with their hosts, creating a considerable impact on the host and their ecosystem. This book introduces readers to microbiomes and microbiome engineering. It covers topics like omics tools in microbial research, strategies to engineer human microbiomes, the application of synthetic biology to build smart microbes, and the future of microbiome engineering. It includes the application of microbiome engineering in improving human health, livestock, and agricultural productivity. The book is intended for researchers and students in the fields of microbiology and biotechnology.




The Lung Microbiome


Book Description

Studying the lung microbiome requires a specialist approach to sampling, laboratory techniques and statistical analysis. This Monograph introduces the techniques used and discusses how respiratory sampling, 16S rRNA gene sequencing, metagenomics and the application of ecological theory can be used to examine the respiratory microbiome. It examines the different components of the respiratory microbiome: viruses and fungi in addition to the more frequently studied bacteria. It also considers a range of contexts from the paediatric microbiome and how this develops to disease of all ages including asthma and chronic obstructive pulmonary disease, chronic suppurative lung diseases, interstitial lung diseases, acquired pneumonias, transplantation, cancer and HIV, and the interaction of the respiratory microbiome and the environment.




Microbiomes of the Built Environment


Book Description

People's desire to understand the environments in which they live is a natural one. People spend most of their time in spaces and structures designed, built, and managed by humans, and it is estimated that people in developed countries now spend 90 percent of their lives indoors. As people move from homes to workplaces, traveling in cars and on transit systems, microorganisms are continually with and around them. The human-associated microbes that are shed, along with the human behaviors that affect their transport and removal, make significant contributions to the diversity of the indoor microbiome. The characteristics of "healthy" indoor environments cannot yet be defined, nor do microbial, clinical, and building researchers yet understand how to modify features of indoor environmentsâ€"such as building ventilation systems and the chemistry of building materialsâ€"in ways that would have predictable impacts on microbial communities to promote health and prevent disease. The factors that affect the environments within buildings, the ways in which building characteristics influence the composition and function of indoor microbial communities, and the ways in which these microbial communities relate to human health and well-being are extraordinarily complex and can be explored only as a dynamic, interconnected ecosystem by engaging the fields of microbial biology and ecology, chemistry, building science, and human physiology. This report reviews what is known about the intersection of these disciplines, and how new tools may facilitate advances in understanding the ecosystem of built environments, indoor microbiomes, and effects on human health and well-being. It offers a research agenda to generate the information needed so that stakeholders with an interest in understanding the impacts of built environments will be able to make more informed decisions.




Principles in Microbiome Engineering


Book Description

Principles in Microbiome Engineering Provides an overview of the techniques and applications insight into the complex composition and interactions of microbiomes Microbiomes, the communities of microorganisms that inhabit specific ecosystems or organisms, can be engineered to modify the structure of microbiota and reestablish ecological balance. In recent years, a better understanding of microbial composition and host-microbe interactions has led to the development of new applications for improving human health and increasing agricultural productivity and quality. Principles in Microbiome Engineering introduces readers to the tools and applications involved in manipulating the composition of a microbial community to improve the function of an eco-system. Covering a range of key topics, this up-to-date volume discusses current research in areas such as microbiome-based therapeutics for human diseases, crop plant breeding, animal husbandry, soil engineering, food and beverage applications, and more. Divided into three sections, the text first describes the critical roles of systems biology, synthetic biology, computer modelling, and machine learning in microbiome engineering. Next, the volume explores various state-of-the-art applications, including cancer immunotherapy and prevention of diseases associated with the human microbiome, followed by a concluding section offering perspectives on the future of microbiome engineering and potential applications. Introduces a variety of applications of microbiome engineering in the fields of medicine, agriculture, and food and beverage products Presents current research into the complex interactions and relationships between microbiomes and biotic and abiotic elements of their environments Examines the use of technologies such as Artificial Intelligence (AI), Machine Learning (ML), and Big Data analytics to advance understanding of microbiomes Discusses the engineering of microbiomes to address human health conditions such as neuro psychiatric disorders and autoimmune and inflammatory diseases Edited and authored by leading researchers in the rapidly evolving field, Principles in Microbiome Engineering is an essential resource for biotechnologists, biochemists, microbiologists, pharmacologists, and practitioners working in the biotechnology and pharmaceutical industries.




Microbiome in Human Health and Disease


Book Description

The book provides an overview on how the microbiome contributes to human health and disease. The microbiome has also become a burgeoning field of research in medicine, agriculture & environment. The readers will obtain profound knowledge on the connection between intestinal microbiota and immune defense systems, medicine, agriculture & environment. The book may address several researchers, clinicians and scholars working in biomedicine, microbiology and immunology. The application of new technologies has no doubt revolutionized the research initiatives providing new insights into the dynamics of these complex microbial communities and their role in medicine, agriculture & environment shall be more emphasized. Drawing on broad range concepts of disciplines and model systems, this book primarily provides a conceptual framework for understanding these human-microbe, animal-microbe & plant-microbe, interactions while shedding critical light on the scientific challenges that lie ahead. Furthermore this book explains why microbiome research demands a creative and interdisciplinary thinking—the capacity to combine microbiology with human, animal and plant physiology, ecological theory with immunology, and evolutionary perspectives with metabolic science.This book provides an accessible and authoritative guide to the fundamental principles of microbiome science, an exciting and fast-emerging new discipline that is reshaping many aspects of the life sciences. These microbial partners can also drive ecologically important traits, from thermal tolerance to diet in a typical immune system, and have contributed to animal and plant diversification over long evolutionary timescales. Also this book explains why microbiome research presents a more complete picture of the biology of humans and other animals, and how it can deliver novel therapies for human health and new strategies.