Human Centered Robot Systems


Book Description

Human Centered Robotic Systems must be able to interact with humans such that the burden of adaptation lies with the machine and not with the human. This book collates a set of prominent papers presented during a two-day conference on "Human Centered Robotic Systems" held on November 19-20, 2009, in Bielefeld University, Germany. The aim of the conference was to bring together researchers from the areas of robotics, computer science, psychology, linguistics, and biology who are all focusing on a shared goal of cognitive interaction. A survey of recent approaches, the current state-of-the-art, and possible future directions in this interdisciplinary field is presented. It provides practitioners and scientists with an up-to-date introduction to this dynamic field, with methods and solutions that are likely to significantly impact on our future lives.




Human-Centered AI


Book Description

The remarkable progress in algorithms for machine and deep learning have opened the doors to new opportunities, and some dark possibilities. However, a bright future awaits those who build on their working methods by including HCAI strategies of design and testing. As many technology companies and thought leaders have argued, the goal is not to replace people, but to empower them by making design choices that give humans control over technology. In Human-Centered AI, Professor Ben Shneiderman offers an optimistic realist's guide to how artificial intelligence can be used to augment and enhance humans' lives. This project bridges the gap between ethical considerations and practical realities to offer a road map for successful, reliable systems. Digital cameras, communications services, and navigation apps are just the beginning. Shneiderman shows how future applications will support health and wellness, improve education, accelerate business, and connect people in reliable, safe, and trustworthy ways that respect human values, rights, justice, and dignity.




Human-Robot Interaction


Book Description

This broad overview for graduate students introduces multidisciplinary topics from robotics to sociology which are needed to understand the area.




The Smart Nonprofit


Book Description

A pragmatic framework for nonprofit digital transformation that embraces the human-centered nature of your organization The Smart Nonprofit turns the page on an era of frantic busyness and scarcity mindsets to one in which nonprofit organizations have the time to think and plan — and even dream. The Smart Nonprofit offers a roadmap for the once-in-a-generation opportunity to remake work and accelerate positive social change. It comes from understanding how to use smart tech strategically, ethically and well. Smart tech does rote tasks like filling out expense reports and identifying prospective donors. However, it is also beginning to do very human things like screening applicants for jobs and social services, while paying forward historic biases. Beth Kanter and Allison Fine elegantly outline the ways smart nonprofits must stay human-centered and root out embedded bias in order to success at the compassionate and creative work that only humans can and should do.




Robotics


Book Description

Papers from a flagship conference reflect the latest developments in the field, including work in such rapidly advancing areas as human-robot interaction and formal methods. Robotics: Science and Systems VIII spans a wide spectrum of robotics, bringing together contributions from researchers working on the mathematical foundations of robotics, robotics applications, and analysis of robotics systems. This volume presents the proceedings of the eighth annual Robotics: Science and Systems (RSS) conference, held in July 2012 at the University of Sydney. The contributions reflect the exciting diversity of the field, presenting the best, the newest, and the most challenging work on such topics as mechanisms, kinematics, dynamics and control, human-robot interaction and human-centered systems, distributed systems, mobile systems and mobility, manipulation, field robotics, medical robotics, biological robotics, robot perception, and estimation and learning in robotic systems. The conference and its proceedings reflect not only the tremendous growth of robotics as a discipline but also the desire in the robotics community for a flagship event at which the best of the research in the field can be presented.




Advanced Mechanics in Robotic Systems


Book Description

Humans have always been fascinated with the concept of artificial life and the construction of machines that look and behave like people. As the field of robotics evolves, it demands continuous development of successful systems with high-performance characteristics for practical applications. Advanced Mechanics in Robotic Systems illustrates original and ambitious mechanical designs and techniques for developing new robot prototypes with successful mechanical operational skills. Case studies are focused on projects in mechatronics that have high growth expectations: humanoid robots, robotics hands, mobile robots, parallel manipulators, and human-centred robots. A good control strategy requires good mechanical design, so a chapter has also been devoted to the description of suitable methods for control architecture design. Readers of Advanced Mechanics in Robotic Systems will discover novel designs for relevant applications in robotic fields, that will be of particular interest to academic and industry-based researchers.




Robotics


Book Description

Papers from a flagship robotics conference that cover topics ranging from kinematics to human-robot interaction and robot perception. Robotics: Science and Systems VI spans a wide spectrum of robotics, bringing together researchers working on the foundations of robotics, robotics applications, and the analysis of robotics systems. This volume presents the proceedings of the sixth Robotics: Science and Systems conference, held in 2010 at the University of Zaragoza, Spain. The papers presented cover a wide range of topics in robotics, spanning mechanisms, kinematics, dynamics and control, human-robot interaction and human-centered systems, distributed systems, mobile systems and mobility, manipulation, field robotics, medical robotics, biological robotics, robot perception, and estimation and learning in robotic systems. The conference and its proceedings reflect not only the tremendous growth of robotics as a discipline but also the desire in the robotics community for a flagship event at which the best of the research in the field can be presented.




Methodology for Creating Human-centered Robots


Book Description

Robots have growing potential to enter the daily lives of people at home, at work, and in cities, for a variety of service, care, and entertainment tasks. However, several challenges currently prevent widespread production and use of such human-centered robots. The goal of this thesis was first to help overcome one of these broad challenges: the lack of basic safety in human-robot physical interactions. Whole-body compliant control algorithms had been previously simulated that could allow safer movement of complex robots, such as humanoids, but no such robots had yet been documented to actually implement these algorithms. Therefore a wheeled humanoid robot "Dreamer" was developed to implement the algorithms and explore additional concepts in human-safe robotics. The lower mobile base part of Dreamer, dubbed "Trikey," is the focus of this work. Trikey was iteratively developed, undergoing cycles of concept generation, design, modeling, fabrication, integration, testing, and refinement. Test results showed that Trikey and Dreamer safely performed movements under whole-body compliant control, which is a novel achievement. Dreamer will be a platform for future research and education in new human-friendly traits and behaviors. Finally, this thesis attempts to address a second broad challenge to advancing the field: the lack of standard design methodology for human-centered robots. Based on the experience of building Trikey and Dreamer, a set of consistent design guidelines and metrics for the field are suggested. They account for the complex nature of such systems, which must address safety, performance, user-friendliness, and the capability for intelligent behavior.




New Trends in Medical and Service Robots


Book Description

Medical and service robotics integrates several disciplines and technologies such as mechanisms, mechatronics, biomechanics, humanoid robotics, exoskeletons, and anthropomorphic hands. This book presents the most recent advances in medical and service robotics, with a stress on human aspects. It collects the selected peer-reviewed papers of the Fourth International Workshop on Medical and Service Robots, held in Nantes, France in 2015, covering topics on: exoskeletons, anthropomorphic hands, therapeutic robots and rehabilitation, cognitive robots, humanoid and service robots, assistive robots and elderly assistance, surgical robots, human-robot interfaces, BMI and BCI, haptic devices and design for medical and assistive robotics. This book offers a valuable addition to existing literature.




Human-centric Robotics - Proceedings Of The 20th International Conference Clawar 2017


Book Description

This book provides state-of-the-art scientific and engineering research findings and developments in the area of service robotics and associated support technologies around the theme of human-centric robotics. The book contains peer reviewed articles presented at the CLAWAR 2017 conference. The book contains a strong stream of papers on robotic locomotion strategies and wearable robotics for assistance and rehabilitation. There is also a strong collection of papers on non-destructive inspection, underwater and UAV robotics to meet the growing emerging needs in various sectors of the society. Robot designs based on biological inspirations are also strongly featured.