Hybrid System Identification


Book Description

​Hybrid System Identification helps readers to build mathematical models of dynamical systems switching between different operating modes, from their experimental observations. It provides an overview of the interaction between system identification, machine learning and pattern recognition fields in explaining and analysing hybrid system identification. It emphasises the optimization and computational complexity issues that lie at the core of the problems considered and sets them aside from standard system identification problems. The book presents practical methods that leverage this complexity, as well as a broad view of state-of-the-art machine learning methods. The authors illustrate the key technical points using examples and figures to help the reader understand the material. The book includes an in-depth discussion and computational analysis of hybrid system identification problems, moving from the basic questions of the definition of hybrid systems and system identification to methods of hybrid system identification and the estimation of switched linear/affine and piecewise affine models. The authors also give an overview of the various applications of hybrid systems, discuss the connections to other fields, and describe more advanced material on recursive, state-space and nonlinear hybrid system identification. Hybrid System Identification includes a detailed exposition of major methods, which allows researchers and practitioners to acquaint themselves rapidly with state-of-the-art tools. The book is also a sound basis for graduate and undergraduate students studying this area of control, as the presentation and form of the book provides the background and coverage necessary for a full understanding of hybrid system identification, whether the reader is initially familiar with system identification related to hybrid systems or not.




Hybrid Systems


Book Description

"Hybrid systems are networks of interacting digital and analog devices. Control systems for inherently unstable aircraft and computer aided manufacturing are typical applications for hybrid systems, but due to the rapid development of processor and circuit technology modern cars and consumer electronics use software to control physical processes. The identifying characteristic of hybrid systems is that they incorporate both continuous components governed by differential equations and also digital components - digital computers, sensors, and actuators controlled by programs. This volume of invited refereed papers is inspired by a workshop on the Theory of Hybrid Systems, held at the Technical University, Lyngby, Denmark, in October 1992, and by a prior Hybrid Systems Workshop, held at Cornell University, USA, in June 1991, organized by R.L. Grossman and A. Nerode. Some papers are the final versions of papers presented at these workshops and some are invited papers from other researchers who were not able to attend these workshops."--PUBLISHER'S WEBSITE.




Linear Parameter-varying System Identification


Book Description

This review volume reports the state-of-the-art in Linear Parameter Varying (LPV) system identification. It focuses on the most recent LPV identification methods for both discrete-time and continuous-time models--




Hybrid Systems: Computation and Control


Book Description

This book constitutes the refereed proceedings of the 12th International Conference on Hybrid Systems: Computation and Control, HSCC 2009, held in San Francisco, CA, USA, in April 2009. The 30 revised full papers and 10 revised short papers presented were carefully reviewed and selected from numerous submissions for inclusion in the book. The papers focus on research in embedded reactive systems involving the interplay between symbolic/discrete and continuous dynamical behaviors and feature the latest developments of applications and theoretical advancements in the analysis, design, control, optimization, and implementation of hybrid systems.




Hybrid Systems: Computation and Control


Book Description

This book constitutes the refereed proceedings of the 8th International Workshop on Hybrid Systems: Computation and Control, HSCC 2005, held in Zurich, Switzerland in March 2005. The 40 revised full papers presented together with 2 invited papers and the abstract of an invited talk were carefully reviewed and selected from 91 submissions. The papers focus on modeling, analysis, and implementation of dynamic and reactive systems involving both discrete and continuous behaviors. Among the topics addressed are tools for analysis and verification, control and optimization, modeling, engineering applications, and emerging directions in programming language support and implementation.




Handbook of Hybrid Systems Control


Book Description

Sets out core theory and reviews new methods and applications to show how hybrid systems can be modelled and understood.




Model-based Health Monitoring of Hybrid Systems


Book Description

This book systematically presents a comprehensive framework and effective techniques for in-depth analysis, clear design procedure, and efficient implementation of diagnosis and prognosis algorithms for hybrid systems. It offers an overview of the fundamentals of diagnosis\prognosis and hybrid bond graph modeling. This book also describes hybrid bond graph-based quantitative fault detection, isolation and estimation. Moreover, it also presents strategies to track the system mode and predict the remaining useful life under multiple fault condition. A real world complex hybrid system—a vehicle steering control system—is studied using the developed fault diagnosis methods to show practical significance. Readers of this book will benefit from easy-to-understand fundamentals of bond graph models, concepts of health monitoring, fault diagnosis and failure prognosis, as well as hybrid systems. The reader will gain knowledge of fault detection and isolation in complex systems including those with hybrid nature, and will learn state-of-the-art developments in theory and technologies of fault diagnosis and failure prognosis for complex systems.




Marketing Management


Book Description

Marketing, more than any other business activities deals with customers. Although there are a number of detailed definitions of marketing perhaps the simplest definition of marketing is managing profitable customer relationship.




System Identification (SYSID '03)


Book Description

The scope of the symposium covers all major aspects of system identification, experimental modelling, signal processing and adaptive control, ranging from theoretical, methodological and scientific developments to a large variety of (engineering) application areas. It is the intention of the organizers to promote SYSID 2003 as a meeting place where scientists and engineers from several research communities can meet to discuss issues related to these areas. Relevant topics for the symposium program include: Identification of linear and multivariable systems, identification of nonlinear systems, including neural networks, identification of hybrid and distributed systems, Identification for control, experimental modelling in process control, vibration and modal analysis, model validation, monitoring and fault detection, signal processing and communication, parameter estimation and inverse modelling, statistical analysis and uncertainty bounding, adaptive control and data-based controller tuning, learning, data mining and Bayesian approaches, sequential Monte Carlo methods, including particle filtering, applications in process control systems, motion control systems, robotics, aerospace systems, bioengineering and medical systems, physical measurement systems, automotive systems, econometrics, transportation and communication systems *Provides the latest research on System Identification *Contains contributions written by experts in the field *Part of the IFAC Proceedings Series which provides a comprehensive overview of the major topics in control engineering.




Hybrid Systems: Computation and Control


Book Description

This book constitutes the refereed proceedings of the 11th International Conference on Hybrid Systems: Computation and Control, HSCC 2008, held in St. Louis, MO, USA, in April 2008. The 42 revised full papers and 20 revised short papers presented were carefully reviewed and selected from numerous submissions for inclusion in the book. The papers focus on research in embedded, reactive systems involving the interplay between symbolic/switching and continuous dynamical behaviors and feature the latest developments of applications and theoretical advancements in the design, analysis, control, optimization, and implementation of hybrid systems, with particular attention to embedded and networked control systems.