Metal Oxides in Heterogeneous Catalysis


Book Description

Metal Oxides in Heterogeneous Catalysis is an overview of the past, present and future of heterogeneous catalysis using metal oxides catalysts. The book presents the historical, theoretical, and practical aspects of metal oxide-based heterogeneous catalysis. Metal Oxides in Heterogeneous Catalysis deals with fundamental information on heterogeneous catalysis, including reaction mechanisms and kinetics approaches.There is also a focus on the classification of metal oxides used as catalysts, preparation methods and touches on zeolites, mesoporous materials and Metal-organic frameworks (MOFs) in catalysis. It will touch on acid or base-type reactions, selective (partial) and total oxidation reactions, and enzymatic type reactions The book also touches heavily on the biomass applications of metal oxide catalysts and environmentally related/depollution reactions such as COVs elimination, DeNOx, and DeSOx. Finally, the book also deals with future trends and prospects in metal oxide-based heterogeneous catalysis. - Presents case studies in each chapter that provide a focus on the industrial applications - Includes fundamentals, key theories and practical applications of metal oxide-based heterogeneous catalysis in one comprehensive resource - Edited, and contributed, by leading experts who provide perspectives on synthesis, characterization and applications




Hydrogen Production Technologies


Book Description

Provides a comprehensive practical review of the new technologies used to obtain hydrogen more efficiently via catalytic, electrochemical, bio- and photohydrogen production. Hydrogen has been gaining more attention in both transportation and stationary power applications. Fuel cell-powered cars are on the roads and the automotive industry is demanding feasible and efficient technologies to produce hydrogen. The principles and methods described herein lead to reasonable mitigation of the great majority of problems associated with hydrogen production technologies. The chapters in this book are written by distinguished authors who have extensive experience in their fields, and readers will have a chance to compare the fundamental production techniques and learn about the pros and cons of these technologies. The book is organized into three parts. Part I shows the catalytic and electrochemical principles involved in hydrogen production technologies. Part II addresses hydrogen production from electrochemically active bacteria (EAB) by decomposing organic compound into hydrogen in microbial electrolysis cells (MECs). The final part of the book is concerned with photohydrogen generation. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal free semiconductor-based nanomaterials for photocatalytic hydrogen production are extensively discussed.




Horizons in Sustainable Industrial Chemistry and Catalysis


Book Description

Horizons in Sustainable Industrial Chemistry and Catalysis, Volume 178, presents a comprehensive picture of recent developments in terms of sustainable industrial processes and the catalytic needs and opportunities to develop these novel routes. Each chapter includes an introduction and state-of-the-art in the field, along with a series of specific aspects and examples. The book identifies new opportunities for research that will help us transition to low carbon and sustainable energy and chemical production. Users will find an integrated view of the new possibilities in this area that unleashes new possibilities in energy and chemistry. - Combines an analysis of each scenario, the state-of-the art, and specific examples to help users better understand needs, opportunities, gaps and challenges - Offers an integrated view of new catalytic technologies that are needed for future use - Presents an interdisciplinary approach that combines broad expertise - Brings together experts in the area of sustainable industrial chemistry




State-of-the-Art Materials Science in Belgium 2017


Book Description

This book is a printed edition of the Special Issue "State-of-the-Art Materials Science in Belgium 2017" that was published in Materials




Advances in Nanostructured Composites


Book Description

The first volume of this book covered Section I: Introduction to Nanocomposites Fabrication and Section II: CNT and Graphene Nanocomposites. The present second volume covers Section III: Recent Applications of Nanocomposites. The second volume aims to provide a guide for different applications of modern nanocomposites especially those fabricated by carbon nanotubes and graphene. The book makes a comparative study of fiber-reinforced composites which have been embedded into the matrix with nanocomposites containing nanotubes in place of fibers. The main topics of this volume are: Electrochemical Properties of Nanoporous Based Materials, Fabrication and Application of Graphene Oxide-based Metal and Metal Oxide Nanocomposites, Electrochemical Sensors/Biosensors Based on Carbon Aerogels/Xerogels, Advances in Nanobiocatalysis: Strategies for Lipase Immobilization and Stabilization, Metal Oxide Based Heterojunction Nanoscale Materials for Chemiresistive Gas Sensors, Recent Advances in Polymer Nanocomposite Coatings for Corrosion Protection, Recent Advances in the Design of Nanocomposite Materials via Laser Techniques for Biomedical Applications, Carbonaceous Nanostructured Composites for Electrochemical Power Sources: Fuel Cells, Supercapacitors and Batteries, Bismuth Vanadate Based Nanostructured and Nanocomposite Photocatalyst Materials for Water Splitting Application.




Modern Aspects of Rare Earths and their Complexes


Book Description

In order to use rare earths successfully in various applications, a good understanding of the chemistry of these elements is of paramount importance. Nearly three to four decades have passed since titles such as The Rare Earths edited by F.H. Spedding and A.H. Daane, The chemistry of the Rare Earth Elements by N.E. Topp and Complexes of the Rare Earths by S.P. Sinha were published. There have been many international conferences and symposia on rare earths, as well as the series of volumes entitled Handbook of Physics and Chemistry of Rare Earths edited by K.A. Gschneidner and L. Eyring. Thus, there is a need for a new title covering modern aspects of rare earth complexes along with the applications. The present title consists of twelve chapters. 1. Introduction2. General aspects3. Stability of complexes4. Lanthanide complexes5. Structural chemistry of lanthanide compounds6. Organometallic complexes7. Kinetics and mechanisms of rare earths complexation8. Spectroscopy of lanthanide complexes9. Photoelectron spectroscopy of rare earths10. Lanthanide NMR shift reagents11. Environmental ecological biological aspects12. Applications The authors studied in schools headed by pioneers in rare earth chemistry, have a combined experience of one hundred and fifty years in inorganic chemistry, rare earth complex chemistry, nuclear and radiochemistry of rare earths and supramolecular chemistry. The present monograph is a product of this rich experience.




Basic Principles in Applied Catalysis


Book Description

Written by a team of internationally recognized experts, this book addresses the most important types of catalytic reactions and catalysts as used in industrial practice. Both applied aspects and the essential scientific principles are described. The main topics can be summarized as follows: heterogeneous, homogeneous and biocatalysis, catalyst preparation and characterization, catalytic reaction engineering and kinetics, catalyst deactivation and industrial perspective.




PEM Water Electrolysis


Book Description

PEM Water Electrolysis, a volume in the Hydrogen Energy and Fuel Cell Primers series presents the most recent advances in the field. It brings together information that has thus far been scattered in many different sources under one single title, making it a useful reference for industry professionals, researchers and graduate students. Volumes One and Two allow readers to identify technology gaps for commercially viable PEM electrolysis systems for energy applications and examine the fundamentals of PEM electrolysis and selected research topics that are top of mind for the academic and industry community, such as gas cross-over and AST protocols. The book lays the foundation for the exploration of the current industrial trends for PEM electrolysis, such as power to gas application and a strong focus on the current trends in the application of PEM electrolysis associated with energy storage. - Presents the fundamentals and most current knowledge in proton exchange membrane water electrolyzers - Explores the technology gaps and challenges for commercial deployment of PEM water electrolysis technologies - Includes unconventional systems, such as ozone generators - Brings together information from many different sources under one single title, making it a useful reference for industry professionals, researchers and graduate students alike




Advances in Synthesis Gas: Methods, Technologies and Applications


Book Description

Advances in Synthesis Gas: Methods, Technologies and Applications: Syngas Products and Usage considers the applications and usages of syngas for producing different chemical materials such as hydrogen, methanol, ethanol, methane, ammonia, and more. In addition, power generation in fuel cells, or in combination with heat from syngas, as well as iron reduction with economic and environmental challenges for syngas utilization are described in detail. - Introduces syngas characteristics and its properties - Describes various methods and technologies for producing syngas - Discusses syngas production from different roots and feedstocks




Handbook of Composites from Renewable Materials, Physico-Chemical and Mechanical Characterization


Book Description

The Handbook of Composites From Renewable Materials comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The handbook covers a multitude of natural polymers/ reinforcement/ fillers and biodegradable materials. Together, the 8 volumes total at least 5000 pages and offers a unique publication. This 3rd volume of the Handbook is solely focused on the Physico-Chemical and Mechanical Characterization of renewable materials. Some of the important topics include but not limited to: structural and biodegradation characterization of supramolecular PCL/HAP nano-composites; different characterization of solid bio-fillers based agricultural waste material; poly (ethylene-terephthalate) reinforced with hemp fibers; poly (lactic acid) thermoplastic composites from renewable materials; chitosan –based composite materials: fabrication and characterization; the use of flax fiber reinforced polymer (FFRP) composites in the externally reinforced structures for seismic retrofitting monitored by transient thermography and optical techniques; recycling and reuse of fiber reinforced polymer wastes in concrete composite materials; analysis of damage in hybrid composites subjected to ballistic impacts; biofiber reinforced acrylated epoxidized soybean oil (AESO) biocomposites; biopolyamides and high performance natural fiber-reinforced biocomposites; impact of recycling on the mechanical and thermo-mechanical properties of wood fiber based HDPE and PLA composites; lignocellulosic fibers composites: an overview; biodiesel derived raw glycerol to value added products; thermo-mechanical characterization of sustainable structural composites; novel pH sensitive composite hydrogel based on functionalized starch/clay for the controlled release of amoxicillin; preparation and characterization of biobased thermoset polymers from renewable resources; influence of natural fillers size and shape into mechanical and barrier properties of biocomposites; composite of biodegradable polymer blends of PCL/PLLA and coconut fiber - the effects of ionizing radiation; packaging composite materials from renewable resources; physicochemical properties of ash based geopolymer concrete; a biopolymer derived from castor oil polyurethane; natural polymer based biomaterials; physical and mechanical properties of polymer membranes from renewable resources