Hydrologic and Hydraulic Modeling Support


Book Description

Digital elevation model issues in water resources modeling - Preparation of DEMs for use in environmental modeling analysis - Source water protection project : a comparison of watershed delineation methods in ARC/INFO and arcView GIS - DEM preprocessing for efficient watershed delineation - Gis tools for HMS modeling support - Hydrologic model of the buffalo bayou using GIS - Development of digital terrain representation for use in river modeling - HEC-GeoRAS : linking GIS to hydraulic analysis using ARC/INFO and HEC-RAS - Floodplain determination using arcView GIS and HEC-RAS - The accuracy and efficiency of GIS-Based floodplain determinations.




Arc Hydro


Book Description

Why Arc hydro? / David Maidment / - Arc Hydro framwork / David Maidment, Scott Morehouse / - Hydro networks / Francisco Olivera, David Maidment / - Drainage systems / Francisco Olivera, Jordan Furnans / River channels / Nawajish Noma, James Nelson / Hydrography / Kim Davis, Jordan Furnans / - Time series / Damid Maidment, Venkatesh Merwade / - Hydrologic modeling / Steve Grise, David Arctur.




Hydrologic Modeling


Book Description

This book contains seven parts. The first part deals with some aspects of rainfall analysis, including rainfall probability distribution, local rainfall interception, and analysis for reservoir release. Part 2 is on evapotranspiration and discusses development of neural network models, errors, and sensitivity. Part 3 focuses on various aspects of urban runoff, including hydrologic impacts, storm water management, and drainage systems. Part 4 deals with soil erosion and sediment, covering mineralogical composition, geostatistical analysis, land use impacts, and land use mapping. Part 5 treats remote sensing and geographic information system (GIS) applications to different hydrologic problems. Watershed runoff and floods are discussed in Part 6, encompassing hydraulic, experimental, and theoretical aspects. Water modeling constitutes the concluding Part 7. Soil and Water Assessment Tool (SWAT), Xinanjiang, and Soil Conservation Service-Curve Number (SCS-CN) models are discussed. The book is of interest to researchers and practitioners in the field of water resources, hydrology, environmental resources, agricultural engineering, watershed management, earth sciences, as well as those engaged in natural resources planning and management. Graduate students and those wishing to conduct further research in water and environment and their development and management find the book to be of value.




Hydrological Modeling


Book Description

This book carefully considers hydrological models which are essential for predicting floods, droughts, soil moisture estimation, land use change detection, geomorphology and water structures. The book highlights recent advances in the area of hydrological modelling in the Ganga Basin and other internationally important river basins. The impact of climate change on water resources is a global concern. Water resources in many countries are already stressed, and climate change along with burgeoning population, rising standard of living and increasing demand are adding to the stress. Furthermore, river basins are becoming less resilient to climatic vagaries. Fundamental to addressing these issues is hydrological modelling which is covered in this book. Integrated water resources management is vital to ensure water and food security. Integral to the management is groundwater and solute transport, and this book encompasses tools that will be useful to mitigate the adverse consequences of natural disasters.




Distributed Hydrological Modelling


Book Description

It is the task of the engineer, as of any other professional person, to do everything that is reasonably possible to analyse the difficulties with which his or her client is confronted, and on this basis to design solutions and implement these in practice. The distributed hydrological model is, correspondingly, the means for doing everything that is reasonably possible - of mobilising as much data and testing it with as much knowledge as is economically feasible - for the purpose of analysing problems and of designing and implementing remedial measures in the case of difficulties arising within the hydrological cycle. Thus the aim of distributed hydrologic modelling is to make the fullest use of cartographic data, of geological data, of satellite data, of stream discharge measurements, of borehole data, of observations of crops and other vegetation, of historical records of floods and droughts, and indeed of everything else that has ever been recorded or remembered, and then to apply to this everything that is known about meteorology, plant physiology, soil physics, hydrogeology, sediment transport and everything else that is relevant within this context. Of course, no matter how much data we have and no matter how much we know, it will never be enough to treat some problems and some situations, but still we can aim in this way to do the best that we possibly can.




Environmental and Hydrological Systems Modelling


Book Description

Mathematical modelling has become an indispensable tool for engineers, scientists, planners, decision makers and many other professionals to make predictions of future scenarios as well as real impending events. As the modelling approach and the model to be used are problem specific, no single model or approach can be used to solve all problems, and there are constraints in each situation. Modellers therefore need to have a choice when confronted with constraints such as lack of sufficient data, resources, expertise and time. Environmental and Hydrological Systems Modelling provides the tools needed by presenting different approaches to modelling the water environment over a range of spatial and temporal scales. Their applications are shown with a series of case studies, taken mainly from the Asia-Pacific Region. Coverage includes: Population dynamics Reaction kinetics Water quality systems Longitudinal dispersion Time series analysis and forecasting Artificial neural networks Fractals and chaos Dynamical systems Support vector machines Fuzzy logic systems Genetic algorithms and genetic programming This book will be of great value to advanced students, professionals, academics and researchers working in the water environment.







Distributed Hydrologic Modeling Using GIS


Book Description

1. 5 REFERENCES 127 7 DIGITAL TERRAIN 129 1. 1 INTRODUCTION 129 1. 2 DRAINAGE NETWORK 130 1. 3 DEFINITION OF CHANNEL NETWORKS 135 1. 4 RESOLUTION DEPENDENT EFFECTS 138 1. 5 CONSTRAINING DRAINAGE DIRECTION 141 1. 6 SUMMARY 145 1. 7 REFERENCES 146 8 PRECIPITATION MEASUREMENT 149 1. 1 INTRODUCTION 149 1. 2 RAIN GAUGE ESTIMATION OF RAINFALL 151 ADAR STIMATION OF RECIPITATION 1. 3 R E P 155 1. 4 WSR-88D RADAR CHARACTERISTICS 167 1. 5 INPUT FOR HYDROLOGIC MODELING 172 1. 6 SUMMARY 174 1. 7 REFERENCES 175 9 FINITE ELEMENT MODELING 177 1. 1 INTRODUCTION 177 1. 2 MATHEMATICAL FORMULATION 182 1. 3 SUMMARY 194 1. 4 REFERENCES 195 10 DISTRIBUTED MODEL CALIBRATION 197 1. 1 INTRODUCTION 197 1. 2 CALIBRATION APPROACH 199 1. 3 DISTRIBUTED MODEL CALIBRATION 201 1. 4 AUTOMATIC CALIBRATION 208 1. 5 SUMMARY 214 1. 6 REFERENCES 214 11 DISTRIBUTED HYDROLOGIC MODELING 217 1. 1 INTRODUCTION 218 1. 2 CASE STUDIES 218 1. 3 SUMMARY 236 1. 4 REFERENCES 237 12 HYDROLOGIC ANALYSIS AND PREDICTION 239 1. 1 INTRODUCTION 239 x Distributed Hydrologic Modeling Using GIS 1. 2 VFLOTM EDITIONS 241 1. 3 VFLOTM FEATURES AND MODULES 242 1. 4 MODEL FEATURE SUMMARY 245 1. 5 VFLOTM REAL-TIME 256 1. 6 DATA REQUIREMENTS 258 1. 7 RELATIONSHIP TO OTHER MODELS 259 1. 8 SUMMARY 260 1.




Urban Hydrology, Hydraulics, and Stormwater Quality


Book Description

A practical introduction on today's challenge of controlling and managing the water resources used by and affected by cities and urbanized communities. The book offers an integrated engineering approach, covering the spectrum of urban watershed management, urban hydraulic systems, and overall stormwater management. Each chapter concludes with helpful problems. Solutions Manual available to qualified professors and instructors upon request. Introduces the reader to two popular, non-proprietary computer-modeling pro-grams: HEC-HMS (U.S. Army Corps of Engineers) and SWMM (U.S EPA).




Urban Hydrology and Hydraulic Design


Book Description

Latest developments of urban hydrology and hydraulic design procedures for storm water management.Drainage planning is an approach that integrates both local and regional efforts to identify drainage conveyance and storage facilities based on hydrologic optimization and cost minimization individually and collectively. In general, the first six chapters cover the hydrologic procedures for rainfall and runoff predictions, and the next 12 chapters focus on hydraulic designs of urban channel, culvert, street inlet, sewer drain, detention basin, retention basin, infiltration basin, low impact designs, and storm water modeling techniques by various routing methods.Hydrology analyses are lengthy in calculation and repetitive in procedure. As a result, Excel Spreadsheet is the most useful and handy tool for hydraulic and hydrologic designs. This book includes 18 sets of spreadsheets developed for 18 subjects. With these spreadsheets, it is easy for the reader to conduct sensitivity tests. Many of the design methods documented in this book have been adopted as the recommended design procedure by Denver, Las Vegas, and Sacramento metropolitan areas in the United States. Based on these methods, there are many design computer models that have been developed and supported by the Denver metro governments for stormwater design purposes.