Ice Mechanics for Geophysical and Civil Engineering Applications


Book Description

This book presents the concepts and tools of ice mechanics, together with examples of their application in the fields of glaciology, climate research and civil engineering in cold regions. It starts with an account of the most important physical properties of sea and polar ice treated as an anisotropic polycrystalline material, and reviews relevant field observations and experimental measurements. The book focuses on theoretical descriptions of the material behaviour of ice in different stress, deformation and deformation-rate regimes on spatial scales ranging from single ice crystals, those typical in civil engineering applications, up to scales of thousands of kilometres, characteristic of large, grounded polar ice caps in Antarctica and Greenland. In addition, it offers a range of numerical formulations based on either discrete (finite-element, finite-difference and smoothed particle hydrodynamics) methods or asymptotic expansion methods, which have been used by geophysicists, theoretical glaciologists and civil engineers to simulate the behaviour of ice in a number of problems of importance to glaciology and civil engineering, and discusses the results of these simulations. The book is intended for scientists, engineers and graduate students interested in mathematical and numerical modelling of a wide variety of geophysical and civil engineering problems involving natural ice.




Ice Mechanics for Geophysical and Civil Engineering Applications


Book Description

This book presents the concepts and tools of ice mechanics, together with examples of their application in the fields of glaciology, climate research and civil engineering in cold regions. It starts with an account of the most important physical properties of sea and polar ice treated as an anisotropic polycrystalline material, and reviews relevant field observations and experimental measurements. The book focuses on theoretical descriptions of the material behaviour of ice in different stress, deformation and deformation-rate regimes on spatial scales ranging from single ice crystals, those typical in civil engineering applications, up to scales of thousands of kilometres, characteristic of large, grounded polar ice caps in Antarctica and Greenland. In addition, it offers a range of numerical formulations based on either discrete (finite-element, finite-difference and smoothed particle hydrodynamics) methods or asymptotic expansion methods, which have been used by geophysicists, theoretical glaciologists and civil engineers to simulate the behaviour of ice in a number of problems of importance to glaciology and civil engineering, and discusses the results of these simulations. The book is intended for scientists, engineers and graduate students interested in mathematical and numerical modelling of a wide variety of geophysical and civil engineering problems involving natural ice.




Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications


Book Description

Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications comprises 411 papers that were presented at SEMC 2019, the Seventh International Conference on Structural Engineering, Mechanics and Computation, held in Cape Town, South Africa, from 2 to 4 September 2019. The subject matter reflects the broad scope of SEMC conferences, and covers a wide variety of engineering materials (both traditional and innovative) and many types of structures. The many topics featured in these Proceedings can be classified into six broad categories that deal with: (i) the mechanics of materials and fluids (elasticity, plasticity, flow through porous media, fluid dynamics, fracture, fatigue, damage, delamination, corrosion, bond, creep, shrinkage, etc); (ii) the mechanics of structures and systems (structural dynamics, vibration, seismic response, soil-structure interaction, fluid-structure interaction, response to blast and impact, response to fire, structural stability, buckling, collapse behaviour); (iii) the numerical modelling and experimental testing of materials and structures (numerical methods, simulation techniques, multi-scale modelling, computational modelling, laboratory testing, field testing, experimental measurements); (iv) innovations and special structures (nanostructures, adaptive structures, smart structures, composite structures, bio-inspired structures, shell structures, membranes, space structures, lightweight structures, long-span structures, tall buildings, wind turbines, etc); (v) design in traditional engineering materials (steel, concrete, steel-concrete composite, aluminium, masonry, timber, glass); (vi) the process of structural engineering (conceptualisation, planning, analysis, design, optimization, construction, assembly, manufacture, testing, maintenance, monitoring, assessment, repair, strengthening, retrofitting, decommissioning). The SEMC 2019 Proceedings will be of interest to civil, structural, mechanical, marine and aerospace engineers. Researchers, developers, practitioners and academics in these disciplines will find them useful. Two versions of the papers are available. Short versions, intended to be concise but self-contained summaries of the full papers, are in this printed book. The full versions of the papers are in the e-book.







Handbook of Port and Harbor Engineering


Book Description

This indispensable handbook provides state-of-the-art information and common sense guidelines, covering the design, construction, modernization of port and harbor related marine structures. The design procedures and guidelines address the complex problems and illustrate factors that should be considered and included in appropriate design scenarios.




IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics


Book Description

This Volume constitutes the Proceedings of the IUTAM Symposium on 'Scaling Laws in Ice Mechanics and Ice Dynamics', held in Fairbanks, Alaska from 13th to 16th of June 2000. Ice mechanics deals with essentially intact ice: in this discipline, descriptions of the motion and deformation of Arctic/ Antarctic and river/lake ice call for the development of physically based constitutive and fracture models over an enormous range in scale: 0.01 m - 10 km. Ice dynamics, on the other hand, deals with the movement of broken ice: descriptions of an aggregate of ice floes call for accurate modeling of momentum transfer through the sea/ice system, again over an enormous range in scale: 1 km (floe scale) - 500 km (basin scale). For ice mechanics, the emphasis on lab-scale (0.01 - 0.5 m) research con trasts with applications at the scale of order 1 km (ice-structure interaction, icebreaking); many important upscaling questions remain to be explored.







Glacier Science and Environmental Change


Book Description

Glacier Science and Environmental Change is an authoritative and comprehensive reference work on contemporary issues in glaciology. It explores the interface between glacier science and environmental change, in the past, present, and future. Written by the world’s foremost authorities in the subject and researchers at the scientific frontier where conventional wisdom of approach comes face to face with unsolved problems, this book provides: state-of-the-art reviews of the key topics in glaciology and related disciplines in environmental change cutting-edge case studies of the latest research an interdisciplinary synthesis of the issues that draw together the research efforts of glaciologists and scientists from other areas such as geologists, hydrologists, and climatologists color-plate section (with selected extra figures provided in color at www.blackwellpublishing.com/knight). The topics in this book have been carefully chosen to reflect current priorities in research, the interdisciplinary nature of the subject, and the developing relationship between glaciology and studies of environmental change. Glacier Science and Environmental Change is essential reading for advanced undergraduates, postgraduate research students, and professional researchers in glaciology, geology, geography, geophysics, climatology, and related disciplines.




Sea Ice


Book Description

SEA ICE The latest edition of the gold standard in sea ice references In the newly revised second edition of Sea Ice: Physics and Remote Sensing, a team of distinguished researchers delivers an in-depth review of the features and structural properties of ice, as well as the latest advances in geophysical sensors, ice parameter retrieval techniques, and remote sensing data. The book has been updated to reflect the latest scientific developments in macro- and micro-scale sea ice research. For this edition, the authors have included high-quality photographs of thin sections from cores of various ice types, as well as a comprehensive account of all major field expeditions that have systematically surveyed sea ice and its properties. Readers will also find: A thorough introduction to ice physics and physical processes, including ice morphology and age-based structural features Practical discussions of radiometric and radar-scattering observations from sea ice, including radar backscatter and microwave emission The latest techniques for the retrieval of sea ice parameters from space-borne and airborne sensor data New chapters on sea ice thermal microwave emissions and on the impact of climate change on polar sea ice Perfect for academic researchers working on sea ice, the cryosphere, and climatology, Sea Ice: Physics and Remote Sensing will also benefit meteorologists, marine operators, and high-latitude construction engineers.




Ice and Construction


Book Description

This book focuses on two areas of ice technology: the use of ice as a construction material and the problems caused by ice to constructions. In connection with describing past and potential future applications of using ice in construction, a detailed discussion on the mechanical properties of ice is given. A state of the art description on ice-making methods, melt protection, methods and reinforcement of ice with the materials are covered.




Recent Books