Power System Analysis


Book Description

Fundamental to the planning, design, and operating stages of any electrical engineering endeavor, power system analysis continues to be shaped by dramatic advances and improvements that reflect today’s changing energy needs. Highlighting the latest directions in the field, Power System Analysis: Short-Circuit Load Flow and Harmonics, Second Edition includes investigations into arc flash hazard analysis and its migration in electrical systems, as well as wind power generation and its integration into utility systems. Designed to illustrate the practical application of power system analysis to real-world problems, this book provides detailed descriptions and models of major electrical equipment, such as transformers, generators, motors, transmission lines, and power cables. With 22 chapters and 7 appendices that feature new figures and mathematical equations, coverage includes: Short-circuit analyses, symmetrical components, unsymmetrical faults, and matrix methods Rating structures of breakers Current interruption in AC circuits, and short-circuiting of rotating machines Calculations according to the new IEC and ANSI/IEEE standards and methodologies Load flow, transmission lines and cables, and reactive power flow and control Techniques of optimization, FACT controllers, three-phase load flow, and optimal power flow A step-by-step guide to harmonic generation and related analyses, effects, limits, and mitigation, as well as new converter topologies and practical harmonic passive filter designs—with examples More than 2000 equations and figures, as well as solved examples, cases studies, problems, and references Maintaining the structure, organization, and simplified language of the first edition, longtime power system engineer J.C. Das seamlessly melds coverage of theory and practical applications to explore the most commonly required short-circuit, load-flow, and harmonic analyses. This book requires only a beginning knowledge of the per-unit system, electrical circuits and machinery, and matrices, and it offers significant updates and additional information, enhancing technical content and presentation of subject matter. As an instructional tool for computer simulation, it uses numerous examples and problems to present new insights while making readers comfortable with procedure and methodology.




Short-Circuits in AC and DC Systems


Book Description

This book provides an understanding of the nature of short-circuit currents, current interruption theories, circuit breaker types, calculations according to ANSI/IEEE and IEC standards, theoretical and practical basis of short-circuit current sources, and the rating structure of switching devices. The book aims to explain the nature of short-circuit currents, the symmetrical components for unsymmetrical faults, and matrix methods of solutions, which are invariably used on digital computers. It includes innovations, worked examples, case studies, and solved problems.




Arc Flash Hazard Analysis and Mitigation


Book Description

This new edition of the definitive arc flash reference guide, fully updated to align with the IEEE's updated hazard calculations An arc flash, an electrical breakdown of the resistance of air resulting in an electric arc, can cause substantial damage, fire, injury, or loss of life. Professionals involved in the design, operation, or maintenance of electric power systems require thorough and up-to-date knowledge of arc flash safety and prevention methods. Arc Flash Hazard Analysis and Mitigation is the most comprehensive reference guide available on all aspects of arc flash hazard calculations, protective current technologies, and worker safety in electrical environments. Detailed chapters cover protective relaying, unit protection systems, arc-resistant equipment, arc flash analyses in DC systems, and many more critical topics. Now in its second edition, this industry-standard resource contains fully revised material throughout, including a new chapter on calculation procedures conforming to the latest IEEE Guide 1584. Updated methodology and equations are complemented by new practical examples and case studies. Expanded topics include risk assessment, electrode configuration, the impact of system grounding, electrical safety in workplaces, and short-circuit currents. Written by a leading authority with more than three decades' experience conducting power system analyses, this invaluable guide: Provides the latest methodologies for flash arc hazard analysis as well practical mitigation techniques, fully aligned with the updated IEEE Guide for Performing Arc-Flash Hazard Calculations Explores an inclusive range of current technologies and strategies for arc flash mitigation Covers calculations of short-circuits, protective relaying, and varied electrical system configurations in industrial power systems Addresses differential relays, arc flash sensing relays, protective relaying coordination, current transformer operation and saturation, and more Includes review questions and references at the end of each chapter Part of the market-leading IEEE Series on Power Engineering, the second edition of Arc Flash Hazard Analysis and Mitigation remains essential reading for all electrical engineers and consulting engineers.




Switching in Electrical Transmission and Distribution Systems


Book Description

Switching in Electrical Transmission and Distribution Systems presents the issues and technological solutions associated with switching in power systems, from medium to ultra-high voltage. The book systematically discusses the electrical aspects of switching, details the way load and fault currents are interrupted, the impact of fault currents, and compares switching equipment in particular circuit-breakers. The authors also explain all examples of practical switching phenomena by examining real measurements from switching tests. Other highlights include: up to date commentary on new developments in transmission and distribution technology such as ultra-high voltage systems, vacuum switchgear for high-voltage, generator circuit-breakers, distributed generation, DC-interruption, aspects of cable systems, disconnector switching, very fast transients, and circuit-breaker reliability studies. Key features: Summarises the issues and technological solutions associated with the switching of currents in transmission and distribution systems. Introduces and explains recent developments such as vacuum switchgear for transmission systems, SF6 environmental consequences and alternatives, and circuit-breaker testing. Provides practical guidance on how to deal with unacceptable switching transients. Details the worldwide IEC (International Electrotechnical Commission) standards on switching equipment, illustrating current circuit-breaker applications. Features many figures and tables originating from full-power tests and established training courses, or from measurements in real networks. Focuses on practical and application issues relevant to practicing engineers. Essential reading for electrical engineers, utility engineers, power system application engineers, consultants and power systems asset managers, postgraduates and final year power system undergraduates.







High Voltage Circuit Breakers


Book Description

This newly revised and updated reference presents sensible approaches to the design, selection, and usage of high-voltage circuit breakers-highlighting compliance issues concerning new and aging equipment to the evolving standards set forth by the American National Standards Institute and the International Electrotechnical Commission. This edition features the latest advances in mechanical and dielectric design and application from a simplified qualitative perspective. High Voltage Circuit Breakers: Design and Applications features new material on contact resistance, insulating film coatings, and fretting; temperature at the point of contact; short-time heating of copper; erosion and electromagnetic forces on contacts; closing speed and circuit breaker requirements; "weld" break and contact bounce; factors influencing dielectric strength; air, SF6, vacuum, and solid insulation; and dielectric loss and partial discharges, and includes updated chapters on capacitance switching; switching series and shunt reactors; temporary overvoltages; and the benefits of condition monitoring.










IEEE Recommended Practice for Applying Low-voltage Circuit Breakers Used in Industrial and Commercial Power Systems


Book Description

Information is provided for selecting the proper circuit breaker for a particular application. This recommended practice helps the application engineer specify the type of circuit breaker, ratings, trip functions, accessories, acceptance tests, and maintenance requirements. It also discusses circuit breakers for special applications, e.g., instantaneous only and switches. In addition, it provides information for applying circuit breakers at different locations in the power system, and for protecting specific components. Guidelines are also given for coordinating combinations of line-side and load-side devices.