Iitaka Conjecture


Book Description

The ambitious program for the birational classification of higher-dimensional complex algebraic varieties initiated by Shigeru Iitaka around 1970 is usually called the Iitaka program. Now it is known that the heart of the Iitaka program is the Iitaka conjecture, which claims the subadditivity of the Kodaira dimension for fiber spaces. The main purpose of this book is to make the Iitaka conjecture more accessible. First, Viehweg's theory of weakly positive sheaves and big sheaves is described, and it is shown that the Iitaka conjecture follows from the Viehweg conjecture. Then, the Iitaka conjecture is proved in some special and interesting cases. A relatively simple new proof of Viehweg's conjecture is given for fiber spaces whose geometric generic fiber is of general type based on the weak semistable reduction theorem due to Abramovick–Karu and the existence theorem of relative canonical models by Birkar–Cascini–Hacon–McKernan. No deep results of the theory of variations of Hodge structure are needed. The Iitaka conjecture for fiber spaces whose base space is of general type is also proved as an easy application of Viehweg's weak positivity theorem, and the Viehweg conjecture for fiber spaces whose general fibers are elliptic curves is explained. Finally, the subadditivity of the logarithmic Kodaira dimension for morphisms of relative dimension one is proved. In this book, for the reader's convenience, known arguments as well as some results are simplified and generalized with the aid of relatively new techniques.




Arithmetic Geometry


Book Description

Based on survey lectures given at the 2006 Clay Summer School on Arithmetic Geometry at the Mathematics Institute of the University of Gottingen, this tile is intended for graduate students and recent PhD's. It introduces readers to modern techniques and conjectures at the interface of number theory and algebraic geometry.




The Wild World of 4-Manifolds


Book Description

What a wonderful book! I strongly recommend this book to anyone, especially graduate students, interested in getting a sense of 4-manifolds. —MAA Reviews The book gives an excellent overview of 4-manifolds, with many figures and historical notes. Graduate students, nonexperts, and experts alike will enjoy browsing through it. — Robion C. Kirby, University of California, Berkeley This book offers a panorama of the topology of simply connected smooth manifolds of dimension four. Dimension four is unlike any other dimension; it is large enough to have room for wild things to happen, but small enough so that there is no room to undo the wildness. For example, only manifolds of dimension four can exhibit infinitely many distinct smooth structures. Indeed, their topology remains the least understood today. To put things in context, the book starts with a survey of higher dimensions and of topological 4-manifolds. In the second part, the main invariant of a 4-manifold—the intersection form—and its interaction with the topology of the manifold are investigated. In the third part, as an important source of examples, complex surfaces are reviewed. In the final fourth part of the book, gauge theory is presented; this differential-geometric method has brought to light how unwieldy smooth 4-manifolds truly are, and while bringing new insights, has raised more questions than answers. The structure of the book is modular, organized into a main track of about two hundred pages, augmented by extensive notes at the end of each chapter, where many extra details, proofs and developments are presented. To help the reader, the text is peppered with over 250 illustrations and has an extensive index.







Complex Differential Geometry


Book Description

Discusses the differential geometric aspects of complex manifolds. This work contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. It discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles. It also gives a brief account of the surface classification theory.




Introduction to the Mori Program


Book Description

Mori's Program is a fusion of the so-called Minimal Model Program and the IItaka Program toward the biregular and/or birational classification of higher dimensional algebraic varieties. The author presents this theory in an easy and understandable way with lots of background motivation. Prerequisites are those covered in Hartshorne's book "Algebraic Geometry." This is the first book in this extremely important and active field of research and will become a key resource for graduate students wanting to get into the area.




Compact Complex Surfaces


Book Description

In the 19 years which passed since the first edition was published, several important developments have taken place in the theory of surfaces. The most sensational one concerns the differentiable structure of surfaces. Twenty years ago very little was known about differentiable structures on 4-manifolds, but in the meantime Donaldson on the one hand and Seiberg and Witten on the other hand, have found, inspired by gauge theory, totally new invariants. Strikingly, together with the theory explained in this book these invariants yield a wealth of new results about the differentiable structure of algebraic surfaces. Other developments include the systematic use of nef-divisors (in ac cordance with the progress made in the classification of higher dimensional algebraic varieties), a better understanding of Kahler structures on surfaces, and Reider's new approach to adjoint mappings. All these developments have been incorporated in the present edition, though the Donaldson and Seiberg-Witten theory only by way of examples. Of course we use the opportunity to correct some minor mistakes, which we ether have discovered ourselves or which were communicated to us by careful readers to whom we are much obliged.




Algebraic Threefolds


Book Description




Complex Algebraic Threefolds


Book Description

A detailed treatment of the explicit aspects of the birational geometry of algebraic threefolds arising from the minimal model program.