Impacts in Mechanical Systems


Book Description

This volume constitutes an advanced introduction to the field of analysis, modeling and numerical simulation of rigid body mechanical systems with unilateral constraints. The topics include Moreau's sweeping process, the numerical analysis of nonsmooth multibody systems with friction, the study of energetical restitution coefficients for elasto-plastic models, the study of stability and bifurcation in systems with impacts, and the development of a multiple impact rule for Newton's cradle and the simple rocking model. Combining pedagogical aspects with innovative approaches, this book will not only be of interest to researchers working actively in the field, but also to graduate students wishing to get acquainted with this field of research through lectures written at a level also accessible to nonspecialists.




Impacts in Mechanical Systems


Book Description

This volume constitutes an advanced introduction to the field of analysis, modeling and numerical simulation of rigid body mechanical systems with unilateral constraints. The topics include Moreau's sweeping process, the numerical analysis of nonsmooth multibody systems with friction, the study of energetical restitution coefficients for elasto-plastic models, the study of stability and bifurcation in systems with impacts, and the development of a multiple impact rule for Newton's cradle and the simple rocking model. Combining pedagogical aspects with innovative approaches, this book will not only be of interest to researchers working actively in the field, but also to graduate students wishing to get acquainted with this field of research through lectures written at a level also accessible to nonspecialists.




Impact Mechanics


Book Description

This second edition of Impact Mechanics offers new analytical methods with examples for the dynamics of low-speed impact.




Dynamics of Controlled Mechanical Systems with Delayed Feedback


Book Description

Recent years have witnessed a rapid development of active control of various mechanical systems. With increasingly strict requirements for control speed and system performance, the unavoidable time delays in both controllers and actuators have become a serious problem. For instance, all digital controllers, analogue anti aliasing and reconstruction filters exhibit a certain time delay during operation, and the hydraulic actuators and human being interaction usually show even more significant time delays. These time delays, albeit very short in most cases, often deteriorate the control performance or even cause the instability of the system, be cause the actuators may feed energy at the moment when the system does not need it. Thus, the effect of time delays on the system performance has drawn much at tention in the design of robots, active vehicle suspensions, active tendons for tall buildings, as well as the controlled vibro-impact systems. On the other hand, the properly designed delay control may improve the performance of dynamic sys tems. For instance, the delayed state feedback has found its applications to the design of dynamic absorbers, the linearization of nonlinear systems, the control of chaotic oscillators, etc. Most controlled mechanical systems with time delays can be modeled as the dynamic systems described by a set of ordinary differential equations with time delays.




Stability and Convergence of Mechanical Systems with Unilateral Constraints


Book Description

While the stability theory for systems with bilateral constraints is a well-established field, this monograph represents a systematic study of mechanical systems with unilateral constraints, such as unilateral contact, impact and friction. Such unilateral constraints give rise to non-smooth dynamical models for which stability theory is developed in this work. The book will be of interest to those working in the field of non-smooth mechanics and dynamics.




Bifurcation and Chaos in Nonsmooth Mechanical Systems


Book Description

This book presents the theoretical frame for studying lumped nonsmooth dynamical systems: the mathematical methods are recalled, and adapted numerical methods are introduced (differential inclusions, maximal monotone operators, Filippov theory, Aizerman theory, etc.). Tools available for the analysis of classical smooth nonlinear dynamics (stability analysis, the Melnikov method, bifurcation scenarios, numerical integrators, solvers, etc.) are extended to the nonsmooth frame. Many models and applications arising from mechanical engineering, electrical circuits, material behavior and civil engineering are investigated to illustrate theoretical and computational developments.




Optimal Protection from Impact, Shock and Vibration


Book Description

Systems that provide protection from impact, shock and vibration are held up by sophisticated physical principles. In this volume, the author explores those principles in a straightforward manner. All aspects of the theory of optimal isolation are presented, from a description of the systems that use these principles to the design of such systems and the limits of the approach. The text offers several examples of how optimal isolation has been applied in real-world situations, thus serving to emphasize and elucidate the explanation of the theory. Optimal Protection From Impact, Shock and Vibration is ideal for applied engineers and mathematicians, whether students or professionals, who need to understand optimal protection.




Applied Nonlinear Dynamics And Chaos Of Mechanical Systems With Discontinuities


Book Description

Rapid developments in nonlinear dynamics and chaos theory have led to publication of many valuable monographs and books. However, most of these texts are devoted to the classical nonlinear dynamics systems, for example the Duffing or van der Pol oscillators, and either neglect or refer only briefly to systems with motion-dependent discontinuities. In engineering practice a good part of problems is discontinuous in nature, due to either deliberate reasons such as the introduction of working clearance, and/or the finite accuracy of the manufacturing processes.The main objective of this volume is to provide a general methodology for describing, solving and analysing discontinuous systems. It is compiled from the dedicated contributions written by experts in the field of applied nonlinear dynamics and chaos.The main focus is on mechanical engineering problems where clearances, piecewise stiffness, intermittent contact, variable friction or other forms of discontinuity occur. Practical applications include vibration absorbers, percussive drilling of hard materials and dynamics of metal cutting.




Theory of Vibro-Impact Systems and Applications


Book Description

- Models of vibro-impact systems are widely used in machine dynamics, vibration engineering, and structural mechanics. - Only monograph on this subject in English language. - Systematically presents the theory of vibro-impact systems by analysis of typical engineering applications. - Experimental data and computer simulations are presented. - Targeted to engineers and researchers in design and investigation of mechanical systems as well as to lecturers and advanced students.




Advanced Design of Mechanical Systems: From Analysis to Optimization


Book Description

Multibody systems are used extensively in the investigation of mechanical systems including structural and non-structural applications. It can be argued that among all the areas in solid mechanics the methodologies and applications associated to multibody dynamics are those that provide an ideal framework to aggregate d- ferent disciplines. This idea is clearly reflected, e. g. , in the multidisciplinary applications in biomechanics that use multibody dynamics to describe the motion of the biological entities, in finite elements where multibody dynamics provides - werful tools to describe large motion and kinematic restrictions between system components, in system control where the methodologies used in multibody dynamics are the prime form of describing the systems under analysis, or even in many - plications that involve fluid-structure interaction or aero elasticity. The development of industrial products or the development of analysis tools, using multibody dynamics methodologies, requires that the final result of the devel- ments are the best possible within some limitations, i. e. , they must be optimal. Furthermore, the performance of the developed systems must either be relatively insensitive to some of their design parameters or be sensitive in a controlled manner to other variables. Therefore, the sensitivity analysis of such systems is fundamental to support the decision making process. This book presents a broad range of tools for designing mechanical systems ranging from the kinematic and dynamic analysis of rigid and flexible multibody systems to their advanced optimization.