Improved Two-Equation K-Omega Turbulence Models for Aerodynamic Flows


Book Description

Two new versions of the k-omega two-equation turbulence model will be presented. The new Baseline (BSL) model is designed to give results similar to those of the original k-omega model of Wilcox, but without its strong dependency on arbitrary freestream values. The BSL model is identical to the Wilcox model in the inner 50 percent of the boundary-layer but changes gradually to the high Reynolds number Jones-Launder k-epsilon model (in a k-omega formulation) towards the boundary-layer edge. The new model is also virtually identical to the Jones-Lauder model for free shear layers. The second version of the model is called Shear-Stress Transport (SST) model. It is based on the BSL model, but has the additional ability to account for the transport of the principal shear stress in adverse pressure gradient boundary-layers. The model is based on Bradshaw's assumption that the principal shear stress is proportional to the turbulent kinetic energy, which is introduced into the definition of the eddy-viscosity. Both models are tested for a large number of different flowfields. The results of the BSL model are similar to those of the original k-omega model, but without the undesirable freestream dependency. The predictions of the SST model are also independent of the freestream values and show excellent agreement with experimental data for adverse pressure gradient boundary-layer flows. Menter, Florian R. Ames Research Center RTOP 505-59-40...










A Critical Evaluation of Two-Equation Models for Near Wall Turbulence


Book Description

A variety of two-equation turbulence models, including several versions of the K-epsilon model as well as the K-omega model, are analyzed critically for near wall turbulent flows from a theoretical and computational standpoint. It is shown that the K-epsilon model has two major problems associated with it: the lack of natural boundary conditions for the dissipation rate and the appearance of higher-order correlations in the balance of terms for the dissipation rate at the wall. In so far as the former problem is concerned, either physically inconsistent boundary conditions have been used or the boundary conditions for the dissipation rate have been tied to higher-order derivatives of the turbulent kinetic energy which leads to numerical stiffness. The K-omega model can alleviate these problems since the asymptotic behavior of omega is known in more detail and since its near wall balance involves only exact viscous terms. However, the modeled form of the omega equation that is used in the literature is incomplete-an exact viscous term is missing which causes the model to behave in an asymptotically inconsistent manner. By including this viscous term and by introducing new wall damping functions with improved asymptotic behavior, a new K-tau model (where tau is identical with 1/omega is turbulent time scale) is developed. It is demonstrated that this new model is computationally robust and yields improved predictions for turbulent boundary layers. Speziale, Charles G. and Abid, Ridha and Anderson, E. Clay Langley Research Center NAS1-18605..




A Critical Comparison of Two-Equation Turbulence Models


Book Description

Several two-equation models were proposed and tested against benchmark flows by various researchers. For each study, different numerical methods or codes were used to obtain the results which were reported to be an improvement over other models. However, these comparisons may be overshadowed by the different numerical schemes used to obtain the results. With this in mind, several existing two-equation turbulence models, including k-epsilon, k-tau, k-omega, and q-omega models, are implemented into a common flow solver code for near wall turbulent flows. The quality of each model is based on several criteria, including robustness and accuracy of predicting the turbulent quantities. Lang, N. J. and Shih, T. H. Glenn Research Center NASA ORDER C-99066-G...







Evaluation of Various Turbulence Models for Shock-wave Boundary Layer Interaction Flows


Book Description

Despite the modeling capabilities of current computational fluid dynamics (CFD), there still exist problems and inconsistencies in simulating fluid flow in certain flow regimes. Most difficult are the high-speed transonic, supersonic and hypersonic wall-bounded turbulent flows with small or massive regions of separation. To address the problem of the lack of computational accuracy in turbulence modeling, NASA has established the Turbulence Modeling Resource (TMR) website and has issued the NASA 40% Challenge. The aim of this challenge is to identify and improve/develop turbulence and transition models as well as numerical techniques to achieve a 40% reduction in the predictive error in computation of benchmark test cases for turbulent flows. One of the phenomena of considerable interest in the 40% Challenge is the shock-wave boundary layer interaction (SWBLI) that occurs on aircraft surfaces at transonic and supersonic speeds and on space vehicles at hypersonic speeds. The correct modeling of shock-waves is complex enough, but the occurrence of SWBLI adds to the complexity by promoting flow separation, heat transfer, and pressure gradients on the surface. SWBLI may occur in both the external and internal flow path of air and space vehicles; therefore, it is important to accurately predict this phenomenon to improve the design of aircraft and space vehicles. The majority of CFD codes utilize the Reynolds Averaged Navier-Stokes (RANS) equations and employ various turbulence models. The most common among these turbulent models are the one-equation Spalart-Allmaras (SA) model and the two-equation Shear Stress Transport (SST) k-[omega] model. In recent years the CFD community has, in greater number, also started to adopt Large-Eddy Simulation (LES), Direct Numerical Simulation (DNS), and hybrid RANS-LES approaches for improving the accuracy of simulations. However currently, solving the RANS equations with eddy-viscosity turbulence models remains the most commonly used simulation technique in industrial applications. In this research, the one-equation Wray-Agarwal (WA), SA, and SST k-[omega] turbulence models are used to simulate supersonic flows in a 2D compression corner at angles of 8° and 16°, a partial axisymmetric flare of 20°, a full-body conical axisymmetric flare of 20°, and an impinging shock over a flat plate at 6°, 10°, and 14°. The ANSYS Fluent and OpenFOAM flow solvers are employed. Inflow boundary conditions and mesh sensitivity are examined to ensure the grid independence of computed solutions. For each of the three turbulence models, heat transfer, surface pressure, skin friction, and velocity profiles are compared with the available experimental data. It is found that the results from the WA model are in similar or better agreement with the experimental data compared to the SA and SST k-[omega] models for the majority of cases considered.







From Kinetic Theory to Turbulence Modeling


Book Description

The book collects relevant contributions presented at a conference, organized in honour of Carlo Cercignani, that took place at Politecnico di Milano on May 24–28, 2021. Different research areas characterizing the scientific work of Carlo Cercignani have been considered with a particular focus on: mathematical and numerical methods for kinetic equations; kinetic modelling of gas mixtures and polyatomic gases; applications of the Boltzmann equation to electron transport, social phenomena and epidemic spread; turbulence modelling; the Einstein Classical Program; Dynamical Systems Theory.