Improvement of Cereal Quality by Genetic Engineering


Book Description

If I had to nominate an area of food production in which science has played a major role in addressing product quality to meet market needs I would not pass by the intimate rela tionship of cereaI chemistry with cereaI plant breeding programs. In Australia, cereaI chemistry and product quality labs ha ve long been associated with wheat and barley breeding programs. Grain quality characteristics have been principal factors determining registration of new cultivars. This has not been without pain in Australia. On the one hand some cultivars with promising yield and agronomic characteristics have been rejected on the basis of quality characteristics, and for a period our breeders imposed selection regimes based on yield which resulted in declining quality characteristics. In the end the market provides the critic al signals. For many years Australia held a commanding market position on the basis of a single quality image, initiaHy based on bulked wheat of fair/average quality (FAQ). Later this was improved by segregation into four broad classes* based around Australian Standard White (ASW). This is no longer a viable marketing strategy. We were probably a little slow in rec ognising the mosaic of present day wheat markets, but now have up to 18 different grades available. Around the world wheat is a grain with many end uses. Its use in bread is expanding.




Safety of Genetically Engineered Foods


Book Description

Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.




Genetically Engineered Crops


Book Description

Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.




Genetic Resources, Chromosome Engineering, and Crop Improvement


Book Description

Summarizing landmark research, Volume 2 of this essential series furnishes information on the availability of germplasm resources that breeders can exploit for producing high-yielding cereal crop varieties. Written by leading international experts, this volume offers the most comprehensive and up-to-date information on employing genetic resources t




Molecular improvement of cereal crops


Book Description

From the pre-historic era to modern times, cereal grains have been the most important source of human nutrition, and have helped sustain the increasing population and the development of human civilization. In order to meet the food needs of the 21st century, food production must be doubled by the year 2025, and nearly tripled by 2050. Such enormous increases in food productivity cannot be brought about by relying entirely on conventional breeding methods, especially on less land per capita, with poor quality and quantity of water, and under rapidly deteriorating environmental conditions. Complementing and supplementing the breeding of major food crops, such as the cereals, which together account for 66% of the world food supply, with molecular breeding and genetic manipulation may well provide a grace period of about 50 years in which to control population growth and achieve sustainable development. In this volume, leading world experts on cereal biotechnology describe the production and commercialization of the first generation of transgenic cereals designed to substantially reduce or prevent the enormous losses to cereal productivity caused by competition with weeds, and by various pests and pathogens, which is an important first step in that direction.




Cereals and Pulses


Book Description




Seed Proteins


Book Description

Seeds provide more than half of the world's intake of dietary protein and energy and thus are of immense economic, cultural and nutritional importance. Proteins can account for up to 40% of the dry weight of various types of seeds, thereby making a large contribution to the nutritional quality and processing properties of seeds. It is, therefore, not surprising that seed proteins were among the first plant components to be systematically studied, some 250 years ago, and have been a major focus of research over the past 100 years. The properties and behaviour of seed proteins pervade modem life in numerous ways. For example, legume and cereal proteins are used'in the production of a wide range of meat-free foods; the process of bread-making is dep~ndent on the physical chemical properties of wheat seed proteins; and in developed, as well as developing, countries, nutritional deficiencies among vegetarian diets are avoided through balancing legume and cereal seeds as sources of dietary proteins. Understanding seed proteins, in order to improve their composition and properties and to increase their concentrations, will thus continue to be an important research objective for the future. The present volume represents the culmination of a long-discussed plan of the editors, to bring together the best international authorities in order to compile a definitive monograph on biological, biochemical, molecular and genetic aspects of seed proteins.




Molecular Approaches to Crop Improvement


Book Description

Although plant genes were first isolated only some twelve years ago and transfer of foreign DNA into tobacco cells first demonstrated some eight years ago, the application and extension of biotechnology to agricultural problems has already led to the field-testing of genetically modified crop plants. The promise of tailor-made plants containing resistance to pests or diseases as well as many other desirable characteristics has led to the almost compulsory incorporation of molecular biology into the research programs of chemical and seed companies as well as Governmental agricultural agencies. With the routine transformation of rice and the early evidence of transformation of maize the possibility of the world's major cereal crops being modified for improved nutritional value or resistance characteristics is now likely in the next few years. The increasing number of cloned plant genes and the increasing sophistication of our knowledge of the major developmental and biochemi cal pathways in plants should eventually allow us to engineer crop plants with higher yields and with less detrimental impact on the environment than now occurs in our current high input agricultural systems. This book draws together many of the expanding areas of plant molecular biology and genetic engineering that will make a substantial contribution to the development of the more productive and efficient crop plants that the world's farmers will be planting in the next decade.




Cereal Biotechnology


Book Description

The application of biotechnology to food processing has been one of the most important and controversial recent developments in the food industry. With this in mind, Cereal Biotechnology analyzes the practice, potential benefits, and risks of using genetic techniques in cereal processing. This major new text provides both plant molecular biologists and those in the cereal processing industries with a comprehensive overview of the subject.




Genomic Designing for Biotic Stress Resistant Cereal Crops


Book Description

This book presents deliberations on molecular and genomic mechanisms underlying the interactions of crop plants to the biotic stresses caused by different diseases and pests that are important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in cereal crops is imperative for addressing FHNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has provided precise information regarding the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The eight chapters each dedicated to a cereal crop in this volume elucidate on different types of biotic stresses and their effects on and interaction with the crop; enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; present brief on classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing biotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality of yields, and also elaborate some case studies on genome editing focusing on specific genes for generating biotic stress-resistant crops.