In Vitro Transcription and Translation Protocols


Book Description

Most laboratories conducting studies that use molecular biology techniques employ in vitro transcription and translation systems as a routine part of their day-to-day research. The commercial availability of purified bacterial RNA polymerase and the availability of robust tra- lation systems has made in vitro systems attractive not only as an alt- native to the in vivo expression of genes, but also as good model systems for studying specific aspects of transcription and translation. Although fairly efficient eukaryotic translation systems have been established for a number of years, reconstitution of transcription in vitro has proved to be more difficult. Recent improvements in fractionation techniques and the cloning of proteins involved in transcription have made this a fast moving area of research. Considerable progress has also been made in recent years in developing in vitro systems to study transcription and translation in chloroplasts and mitochondria, together with systems for the study of protein import. In Vitro Transcription and Translation Protocols provides many detailed experimental procedures for prokaryotic transcription and translation systems, together with protocols for many key techniques used in the analysis of eukaryotic transcription. In keeping with the successful format of preceding volumes of the Methods in Molecular Biology series, step-by-step instructions are provided, together with extensive notes that cover troubleshooting and special tips considered important.




In Vitro Transcription and Translation Protocols


Book Description

This book is a highly anticipated update of the previous edition. It provides molecular biology laboratories with the most powerful techniques for exploiting in vitro transcription and translation systems. It has been completely updated with new chapters and topics.




E. coli Plasmid Vectors


Book Description

A comprehensive collection of readily reproducible techniques for the manipulation of recombinant plasmids using the bacterial host E. coli. The authors describe proven methods for cloning DNA into plasmid vectors, transforming plasmids into E. coli, and analyzing recombinant clones. They also include protocols for the construction and screening of libraries, as well as specific techniques for specialized cloning vehicles, such as cosmids, bacterial artificial chromosomes, l vectors, and phagemids. Common downstream applications such as mutagenesis of plasmids, recombinant protein expression, and the use of reporter genes, are also described.




Molecular Biomethods Handbook


Book Description

An authoritative team of investigators illuminate the core bioanalytical techniques used every day in their own laboratories, and laboratories throughout the world. These highly experienced scientists fully explain both the theory behind, and the application of, these key techniques, and include extensive references for those seeking detailed laboratory protocols. The techniques covered range from the extraction, separation, detection, and characterization of nucleic acids to gene cloning and library production, mapping, expression, transgenesis, differential display, and DNA profiling, to name a few. Numerous key protein methods, as well as support and related techniques, are also included. The goal is to provide established scientists and novices who are new to these techniques with a deeper understanding of the widest variety of biotechniques and their applications.




PCR Mutation Detection Protocols


Book Description

1Bimal D. Theophilus and Ralph Rapley provide biological and clinical investigators with a comprehensive collection of new, recent, and updated PCR-based screening methods suitable for detecting the presence of both known and novel mutations. The methods cover point mutations (e.g., ASO-PCR, SSCP, DGGE, chemical cleavage), deletions (multiplex PCR, FISH, blotting), non-sense mutations (PTT), and more. The new and exciting techniques of DNA array analysis, along with such recently developed experimental methods as conformation-sensitive gel electrophoresis, are also included. Each chapter explains the basic theory behind the technique and provides valuable notes essential for its successful execution.




In Vitro Mutagenesis Protocols


Book Description

Hands-on researchers with proven track records describe in stepwise fashion their advanced mutagenesis techniques. The contributors focus on improvements to conventional site-directed mutagenesis, including a chapter on chemical site-directed mutagenesis, PCR-based mutagenesis and the modifications that allow high throughput mutagenesis experiments, and mutagenesis based on gene disruption (both in vitro- and in situ-based). Additional methods are provided for in vitro gene evolution; for gene disruption based on recombination, transposon, and casette mutagenesis; and for facilitating the introduction of multiple mutations. Time-tested and highly practical, the protocols in In Vitro Mutagenesis Protocols, 2nd Edition offer today's molecular biologists reliable and powerful techniques with which to illuminate the proteome.




Plant Virology Protocols


Book Description

The aim of Plant Virology Protocols is to provide a source of infor- tion to guide the reader through the wide range of methods involved in gen- ating transgenic plants that are resistant to plant viruses. To this end, we have commissioned a wide-ranging list of chapters that will cover the methods required for: plant virus isolation; RNA extraction; cloning coat p- tein genes; introduction of the coat protein gene into the plant genome; and testing transgenic plants for resistance. The book then moves on to treatments of the mechanisms of resistance, the problems encountered with field testing, and key ethical issues surrounding transgenic technology. Although Plant Virology Protocols deals with the cloning and expression of the coat protein gene, the techniques described can be equally applied to other viral genes and nucleotide sequences, many of which have also been shown to afford protection when introduced into plants. The coat protein has, however, been the most widely applied, and as such has been selected to illustrate the techniques involved. Plant Virology Protocols has been divided into six major sections, c- taining 55 chapters in total.




cDNA Library Protocols


Book Description

The first libraries of complementary DNA (cDNA) clones were con structed in the mid-to-late 1970s using RNA-dependent DNA polymerase (reverse transcriptase) to convert poly A* mRNA into double-stranded cDNA suitable for insertion into prokaryotic vectors. Since then cDNA technology has become a fundamental tool for the molecular biologist and at the same time some very significant advances have occurred in the methods for con structing and screening cDNA libraries. It is not the aim of cDNA Library Protocols to give a comprehensive review of all cDNA library-based methodologies; instead we present a series of up-to-date protocols that together should give a good grounding of proce dures associated with the construction and use of cDNA libraries. In deciding what to include, we endeavored to combine up-to-date versions of some of the most widely used protocols with some very usefiil newer techniques. cDNA Library Protocols should therefore be especially useful to the investigator who is new to the use of cDNA libraries, but should also be of value to the more experienced worker. Chapters 1—5 concentrate on cDNA library construction and manipula tion, Chapters 6 and 7 describe means of cloning difficult-to-obtain ends of cDNAs, Chapters 8-18 give various approaches to the screening of cDNA libraries, and the remaining chapters present methods of analysis of cDNA clones including details of how to analyze cDNA sequence data and how to make use of the wealth of cDNA data emerging from the human genome project.




Protein Purification Protocols


Book Description

Hans Neurath has written that this is the second golden era of enzymology {Protein Science [1994], vol. 3, pp. 1734—1739); he could with justice have been more general and referred to the second golden age of protein chemistry. The last two decades have seen enormous advances in our understanding of the structures and functions of pro teins arising on the one hand from improvements and developments in analytical techniques {see the companion volume, Basic Protein and Peptide Protocols, in this series) and on the other hand from the tech nologies of molecular genetics. Far from turning the focus away from protein science, the ability to isolate, analyze, and express genes has increased interest in proteins as gene products. Hence, many laborato ries are now getting involved in protein isolation for the first time, either as an essential adjunct to their work in molecular genetics or because of a curiosity to know more about the products of the genes that they have been studying. Protein Purification Protocols is aimed mainly at these newcom ers to protein purification, but it is hoped that it will also be of value to established practitioners who may find here techniques that they have not tried, but which might well be most applicable in their work. With the exception mainly of the first and last chapters, the format of the contributions to the present book conform to the established format of the Methods in Molecular Biology series.




Gene Isolation and Mapping Protocols


Book Description

An unprecedented collection of all the most up-to-date techniques for gene isolation and mapping, including the latest methods for gene characterization using database analyses. This collection of thoroughly tested recipes also includes chapters for the computational analysis of novel cDNA sequences with up-to-the-minute information on basic sequence analysis, sequence similarity searches, exon detection and similarity searches, and the prediction of gene function. Its state-of-the-art methods constitute indispensable tools for all scientists engaged in the search for specific disease genes, or in the general advancement of the human genome project.