Inclusion Phenomena in Inorganic, Organic, and Organometallic Hosts


Book Description

The contents of this volume originate from the joint Inclusion Phenomenal Cyclodextrins Symposium held at Lancaster in July 1986. Consisting of 50 extended ab stracts and 21 original contributions, the reader will find an up-to-date survey of the current state of research into, and applications of, inclusion compounds. Topics covered range from cyclodextrin complexes and their use as media for selective chemical reagents and their applications in chromatography and in the pharmaceutical and agricultural areas; the synthesis of new hosts, particularly those containing hydrophobic cavities; the characterisation of inclusion compounds using crystallographic and spectroscopic techniques; the use of inclusion com pounds as enzyme models; macrocyclic complexes and ionophores; to intercalates and zeolites. The Symposium was extremely successful, being attended by some 250 delegates drawn from 23 nations. It is hoped that the reader will recapture the flavour of the meeting from reading this volume. xi Journal of Inclusion Phenomena 5 (1987), 1-2. 1 © 1987 by D. Reidel Publishing Company. Preface The joint meeting comprlslng the 4th International Symposium on Inclusion Phenomena and the 3rd International Symposium on Cyclodextrins was held on 20 - 25 July, 1986 at the University of Lancaster, Great Britain, and followed on from the previous joint meeting held in Tokyo in July, 1984. The meeting was sponsored by the Royal Society of Chemistry.







Inclusion Aspects of Membrane Chemistry


Book Description

There is no doubt that the field of artificial membrane transport using synthetic ionophores has advanced remarkably in the past 15 years due primarily to the synthesis of new ionophores. Even though the theoretical framework substantially predated this activity, the merging of theory with transport experiment has often been sketchy. The purpose of this outline has been to examine key examples to illustrate the underlying principles and to suggest how experimental variables dominate the results obtained. To a very good approximation the assumption of a "diffusion" regime is often justified, is easily confirmed experimentally and provides a clear framework for exploitation of the inherent selectivity of a given ionophore. Thus for synthetic chemists who wish a "quick and nasty" experiment to examine the question of selectivity, the recipe is clear: a mixture containing all ions of interest in a standard experiment for each ligand of interest using a moderately stirred (100-200 rpm) cell and analysis of the mixture produced on the OUT side of the cell at a fixed, small extent of transport. Together with duplicates and controls, this modest set of experiments will place the results on an unambiguous footing from which clear conclusions about each ionophore's characteristics are readily obtained. For those with more detailed interests in the transport process the demands are correspondingly higher.




Spectroscopic and Computational Studies of Supramolecular Systems


Book Description

Physical techniques such as X-ray crystallography, IR spectroscopy and solution-phase NMR spectroscopy have played key roles in the development of supramolecular chemistry. In recent years other spectroscopic techniques have been applied, expanding the range of information obtainable. The most widely used technique is solid-state NMR spectroscopy but techniques such as neutron scattering and NQR spectroscopy can yield significant information. Computational approaches are now becoming powerful complementary methods to experimental techniques and this book reviews the application of these methods to supramolecular systems. The ten chapters provide up-to-date information on the applications of spectroscopic and computational techniques to a wide range of supramolecular systems: Solid State NMR Studies of Host-Guest Materials Infrared Studies of Zeolite Complexes NQR Studies of Inclusion Compounds Neutron Scattering Studies of Zeolite Complexes Solid State NMR Studies of Catalytic Reactions on Molecular Sieves Recent Advances in Computational Studies of Zeolites Theoretical Studies of Cyclodextrins and their Inclusion Complexes Computer Modelling of the Structures of Host-Guest Complexes Computational Studies of Clathrate Hydrates Ab initio Electronic Structure Calculations on Endohedral Complexes of the C60 Cluster. This timely book will prove to be of great value to supramolecular researchers who are familiar with the spectroscopic techniques but who wish to extend their knowledge of the computational methods (and vice versa), to supramolecular researchers working in allied areas whose work would benefit from applying spectroscopic and computational methods, and finally to workers just entering the fascinating area of supramolecular chemistry.




Cyclodextrins in Pharmacy


Book Description

Nearly three thousand papers and patents are dedicated to the actual or potential uses of cyclodextrins in pharmacy and pharmaceutical formulations. This is the first book written for pharmacists and pharmaceutical technologists which not only critically summarizes the enormous amount of literature available, but which can be used as a handbook when looking for solutions to practical problems. The fundamentals -- chemistry of cyclodextrins and their derivatives -- their physical and chemical properties are condensed to the most relevant items in Chapters 1 and 2. Chapter 3 deals with the adsorption, metabolism and toxicological properties of cyclodextrins. Chapter 4 explains the formulation, structure, composition and advantageous effects of the cyclodextrin inclusion complexes. Chapter 5 describes the methods for preparation and characterization of drug/cyclodextrin complexes. Chapters 6 and 7 are dedicated to the pharmacokinetics, biopharmaceutical and technological aspects of drug/CD complexes. Chapter 8 treats the application and effects of cyclodextrins in various drug formulations. The Appendix comprises a collection of recipes for any type of drug formulation. This book is aimed at those who use cyclodextrins in drug formulations, to improve the properties of existing drug formulations, or who want to prepare quite new formulations.




Handbook of Nanomaterials for Industrial Applications


Book Description

Handbook of Nanomaterials for Industrial Applications explores the use of novel nanomaterials in the industrial arena. The book covers nanomaterials and the techniques that can play vital roles in many industrial procedures, such as increasing sensitivity, magnifying precision and improving production limits. In addition, the book stresses that these approaches tend to provide green, sustainable solutions for industrial developments. Finally, the legal, economical and toxicity aspects of nanomaterials are covered in detail, making this is a comprehensive, important resource for anyone wanting to learn more about how nanomaterials are changing the way we create products in modern industry. - Demonstrates how cutting-edge developments in nanomaterials translate into real-world innovations in a range of industry sectors - Explores how using nanomaterials can help engineers to create innovative consumer products - Discusses the legal, economical and toxicity issues arising from the industrial applications of nanomaterials




Encyclopedia of Supramolecular Chemistry - Two-Volume Set (Print)


Book Description

The two-volume Encyclopedia of Supramolecular Chemistry offers authoritative, centralized information on a rapidly expanding interdisciplinary field. User-friendly and high-quality articles parse the latest supramolecular advancements and methods in the areas of chemistry, biochemistry, biology, environmental and materials science and engineering, physics, computer science, and applied mathematics. Designed for specialists and students alike, the set covers the fundamentals of supramolecular chemistry and sets the standard for relevant future research.




3D Printed Conducting Polymers


Book Description

Conducting polymers are smart materials that possess unique and tuneable electrical, optical, and electrochemical properties. 3D printing technology is rapidly advancing, and using conducting polymers for this process can lead to many emerging applications as it can print complex structures cost effectively, though many challenges need to be overcome before this technology can be used on a large scale. 3D Printed Conducting Polymers highlights the state of the art of these materials, the basics of additive printing, and the role of conducting polymers in additive manufacturing. It also discusses applications in energy, sensors, and biomedical areas. Covers fundamentals, synthesis, and various applications of conducting polymers. Discusses basics of energy devices, sensors, and materials technology for emerging applications. Explores new approaches for the synthesis of conducting polymers and composites for 3D print technology. Details future applications and challenges. Offering direction to researchers and advanced students to better understand the chemistry and electrochemical properties of conducting polymers and technologies for 3D printing, this book advances the science and technology of this emerging field for readers in materials and chemical engineering, biotechnology, energy, and related disciplines.




Carbon Nanothreads Materials


Book Description

This book describes carbon nanothreads with complete and comprehensive knowledge covering theories, numerical methods, and properties comparisons with other carbon-based nanomaterials. For one thing, the main theoretical aspects in this book include: First-Principle Calculation, Density Functional Theory, Classical Molecular Dynamics Simulation, Non-equilibrium Molecular Dynamics Simulation, and Coarse Grained Simulation. For another thing, the main research contents include: Fundamental Mechanical Properties; Fracture Characteristics; Electronic and Magnetic Properties; Thermal Properties; Reinforcement in Polymer Composites; and other promising applications in engineering. The target of this book is to provide to many researchers the available theoretical and numerical methods, and useful computational results of carbon nanothreads for reference. This book can be used as a comprehensive source for scientists, academics, researchers, and engineers in various areas of engineering, physical sciences, and computational modeling. In order to achieve this target, the book introduces the microstructure information of carbon nanothreads and the modeling details at full length. The tunable mechanisms of physical properties of carbon nanothreads are discussed in detail, which enable integration of these nanoscale components into high-order structures for “bottom-up design” purpose. The revealed reinforced mechanisms of carbon nanothreads in polymer composites can provide theoretical guidance for engineering design of advanced polymer composites.




Applications of Nanocomposites


Book Description

In this book, different applications of nanomaterials are described based on experiments, validations, and prototype manufacturing. It also covers synthesis, characterization, functionalization and coating of nanomaterials in various application-oriented investigations. The use of nanomaterials in energy storage, catalyst preparation and tribology are a few examples of improving the efficiency of future technologies. In addition, this book has also contributed to the nanomanufacturing of composites for automobile industries, glass industries, textiles and flexible electronics. This book provides knowledge on multiple related fields in applying nanomaterials, emphasizing the most updated literature, understanding applications, and consists of examples and illustrations so that readers can absorb the content rapidly.