Industrial Applications of the Mössbauer Effect


Book Description

As is often the case, the preface is the last task to be finished during the preparation of a large volume such as you are now holding. The first task, obtaining approval for a symposium on the industrial applications, now seems a long time ago. The idea orginated with John Stevens, probably in 1982, from his observation of papers dealing with industrial applications of the Mossbauer effect appearing in the Mossbauer Effect Reference and Data Journal. His initial suggestion for a symposium entitled "Industrial Applications of the Mossbauer Effect" to be held at a national meeting of the American Chemical Society eventually led to the symposium at the International Chemical Congress of Pacific Basin Societies which met in Honolulu, Hawaii in December 1984. This volume is the result of the symposium at the above mentioned Congress, but is not actually the 'proceedings' of the symposium because this volume does not contain all of the over one hundred Mossbauer effect papers that were pre sented at the symposium. Rather it contains a selection of papers that the or ganizing committee for the symposium deemed most appropriate for a volume devoted to industrial applications of the Mossbauer effect. The final volume also contains six chapters that were not a part of the symposium but which are closely related to the topic. There is another difference from many proceedings.




Industrial Applications of the Mössbauer Effect


Book Description

International research scientists and engineers from academia and industry present details of the most recent investigations on industrially related topics and projects using Mössbauer Spectroscopy as a primary analytical technique. Papers cover a broad range of topics including corrosion, catalysis, and environmental monitoring.




Mössbauer Spectroscopy of Environmental Materials and Their Industrial Utilization


Book Description

Mössbauer Spectroscopy of Environmental Materials and their Industrial Utilization provides a description of the properties of materials formed on the earth's surface, their synthetic analogs where applicable, and the products of their modifications in the course of natural processes, such as weathering, or in industrial processing as reflected in their Mössbauer spectra. Particular emphasis is placed on the way in which these processes can be observed and elucidated through the use of Mössbauer spectroscopy. The first chapter covers the basic theory of the Mössbauer effect and Chapters 2 and 3 deal with the nuts and bolts of experimental Mössbauer spectroscopy. The principles of these first three chapters, illustrated with many case studies, are applied to different areas of interest in Chapters 4 through 12. The book is directed to a broad audience ranging from graduate students in environmental sciences or chemical engineering with little or no expertise in Mössbauer spectroscopy to researchers from other disciplines who are familiar with this technique but wish to learn more about possible applications to environmental materials and issues.




Spectroscopic Properties of Inorganic and Organometallic Compounds


Book Description

Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr










Mössbauer Spectroscopy Applied to Inorganic Chemistry


Book Description

In 1988 the Mossbauer effect community completed 30 years of continual contribution to the fields of nuclear physics, solid state science, and a variety of related disciplines. To celebrate this anniversary, Professor Gonser of the Universitat des Saarlandes has contributed a chapter to this volume on the history of the effect. Although Mossbauer spectroscopy has reached its mature years, the chapters in this volume illustrate that it is still a dynamic field of science with applications to topics ranging from permanent magnets to biologi cal mineralization. During the discussion of a possible chapter for this volume, a potential author asked, "Do we really need another Mossbauer book?" The editors responded in the affirmative because they believe that a volume of this type offers several advantages. First, it provides the author with an opportunity to write a personal view of the subject, either with or without extensive pedagogic content. Second, there is no artificially imposed restriction on length. In response to the question, "How long should my chapter be?," we have responded that it should be as long as is necessary to clearly present, explain, and evaluate the topic. In this type of book, it is not necessary to condense the topic into two, four, or eight pages as is now so often a requirement for publication in the research literature.




Mössbauer Spectroscopy Applied to Magnetism and Materials Science


Book Description

During the past 30 years materials science has developed into a full-fledged field for basic and applied scientific enquiry. Indeed, materials scientists have devoted their efforts to creating new materials with improved electronic, magnetic, thermal, mechanical, and optical properties. Often unnoticed, these new materials are rapidly invading our homes and automobiles, and may be found in our utensils, electronic equipment, textiles, home appliances, and electric motors. Even though they may go unnoticed, these new materials have either improved the efficiency and lifetime of these items or have reduced their weight or cost. In particular, magnetically ordered materials are useful in various applications, such as motors, magnetic imaging, magnetic recording, and magnetic levitation. Hence, much effort has been devoted to the development of better hard magnetic materials, magnetic thin films, and molecular magnets. During the same period of time, Mossbauer-effect spectroscopy has grown from a laboratory curiosity to a mature spectroscopic technique, a technique that probes solid-state materials at specific atomic sites and yields microscopic information on the magnetic and electronic properties of these materials. Iron-57 is the most commonly and easily used Mossbauer-effect isotope and, of course, is particularly relevant for the study of magnetic materials. Various applications of Mossbauer spectroscopy to magnetic materials are discussed in the first six chapters of this volume. Other isotopes such as zinc-67 and gadolinium-ISS have recently been used to study the electronic properties of zinc compounds and the electronic and magnetic properties of rare-earth transition metal compounds.




Mössbauer Spectroscopy


Book Description

Providing a modern update of the field, Mossbauer Spectroscopy focuses on applications across a broad range of fields, including analysis of inorganic elements, nanoparticles, metalloenzymyes, biomolecules (including proteins), glass, coal, and iron. Ideal for a broad range of scientists, this one-stop reference presents advances gained in the field over past two decades, including a detailed theoretical description of Mossbauer spectroscopy, an extensive treatment of Mossbauer spectroscopy in applied areas, and challenges and future opportunities for the further development of this technique.




Applications of Analytical Techniques to the Characterization of Materials


Book Description

Over the last several years, the field of materials science has witnessed an explosion of new, advanced materials. They encompass many uses and include superconductors, alloys, glasses, and catalysts. Not only are there quite a number of new enhies into these generic classes of materials, but the materials themselves represent a wide array of physical forms as well. Bulk materials, for example, are being synthesized and applica tions found for them, while still other materials are being synthesized as thin films for yet still more new (and in some cases, as yet unknown) applications. The field continues to expand with (thankfully!) no end in sight as to the number of new possibilities. As work progresses in this area, there is an ever increasing demand for knowing not only what material is formed as an end product but also details of the route by which it is made. The knowledge of reaction mechanisms in their synthesis many times allows a researcher to tailor a preparative scheme to either arrive at the final product in a purer state or with a better yield. Also, a good fundamental experimental knowledge of impuri ties present in the final material helps the investigator get more insight into making it.