Influences of Electric Vehicles on Power System and Key Technologies of Vehicle-to-Grid


Book Description

This book analyzes the influence of electric vehicles on microclimate and the indirect influence on power load from a unique perspective. It discusses different aspects of Vehicle-to-grid (V2G) technology, including large and small-scale charging infrastructures, and describes the effect on electricity price, voltage, frequency and other key V2G technologies. It introduces various aspects of the influence of electric vehicles on the power grids and the control strategies for achieving economic, safe and steady grid operation using V2G technologies. This book is suitable for senior undergraduates and postgraduates majoring in electrical, transportation, or environmental engineering, as well as other related professionals.




Vehicle-to-Grid


Book Description

Vehicle-to-Grid: Linking Electric Vehicles to the Smart Grid provides an integrated treatment of smart grid using electric vehicles by exploring the connection between the stationary grid and PEV power storage. Plug-in electric and hybrid vehicles (PEVs) have the potential to provide substantial storage to a city's grid, a key component in mitigating intermittency issues of power sources. However the batteries of these vehicles also need to be charged at times for when their users need them. As a result, V2G (vehicle-to-grid) is becoming an important issue in the future grid. Topics covered include: - the impact of PEVs and V2G on smart grid and renewable energy systems - distributed energy resource with PEV battery energy storage in the smart grid - power conversion technology in smart grid and PEVs - power control and monitoring of smart grid with PEVs - PEV charging technologies and V2G on distributed energy resources - utility interfaces - economic, social and environmental dimensions of PEVs in the smart grid




Vehicle-to-Grid


Book Description

​This book defines and charts the barriers and future of vehicle-to-grid technology: a technology that could dramatically reduce emissions, create revenue, and accelerate the adoption of battery electric cars. This technology connects the electric power grid and the transportation system in ways that will enable electric vehicles to store renewable energy and offer valuable services to the electricity grid and its markets. To understand the complex features of this emergent technology, the authors explore the current status and prospect of vehicle-to-grid, and detail the sociotechnical barriers that may impede its fruitful deployment. The book concludes with a policy roadmap to advise decision-makers on how to optimally implement vehicle-to-grid and capture its benefits to society while attempting to avoid the impediments discussed earlier in the book.







Developing Charging Infrastructure and Technologies for Electric Vehicles


Book Description

The increase in air pollution and vehicular emissions has led to the development of the renewable energy-based generation and electrification of transportation. Further, the electrification shift faces an enormous challenge due to limited driving range, long charging time, and high initial cost of deployment. Firstly, there has been a discussion on renewable energy such as how wind power and solar power can be generated by wind turbines and photovoltaics, respectively, while these are intermittent in nature. The combination of these renewable energy resources with available power generation system will make electric vehicle (EV) charging sustainable and viable after the payback period. Recently, there has also been a significant discussion focused on various EV charging types and the level of power for charging to minimize the charging time. By focusing on both sustainable and renewable energy, as well as charging infrastructures and technologies, the future for EV can be explored. Developing Charging Infrastructure and Technologies for Electric Vehicles reviews and discusses the state of the art in electric vehicle charging technologies, their applications, economic, environmental, and social impact, and integration with renewable energy. This book captures the state of the art in electric vehicle charging infrastructure deployment, their applications, architectures, and relevant technologies. In addition, this book identifies potential research directions and technologies that facilitate insights on EV charging in various charging places such as smart home charging, parking EV charging, and charging stations. This book will be essential for power system architects, mechanics, electrical engineers, practitioners, developers, practitioners, researchers, academicians, and students interested in the problems and solutions to the state-of-the-art status of electric vehicles.




ICT for Electric Vehicle Integration with the Smart Grid


Book Description

This book provides a basis for full integration of electric vehicles into the smart grid, through the use of ICT tools. It looks at transport and energy system modelling, simulation and optimisation processes; vehicle on-line optimal control, estimation and prediction; energy system strategic planning; and services such as smart charging.




Renewable Energy Integration


Book Description

This book presents different aspects of renewable energy integration, from the latest developments in renewable energy technologies to the currently growing smart grids. The importance of different renewable energy sources is discussed, in order to identify the advantages and challenges for each technology. The rules of connecting the renewable energy sources have also been covered along with practical examples. Since solar and wind energy are the most popular forms of renewable energy sources, this book provides the challenges of integrating these renewable generators along with some innovative solutions. As the complexity of power system operation has been raised due to the renewable energy integration, this book also includes some analysis to investigate the characteristics of power systems in a smarter way. This book is intended for those working in the area of renewable energy integration in distribution networks.




Technologies and Applications for Smart Charging of Electric and Plug-in Hybrid Vehicles


Book Description

This book outlines issues related to massive integration of electric and plug-in hybrid electric vehicles into power grids. Electricity is becoming the preferred energy vector for the next new generation of road vehicles. It is widely acknowledged that road vehicles based on full electric or hybrid drives can mitigate problems related to fossil fuel dependence. This book explains the emerging and understanding of storage systems for electric and plug-in hybrid vehicles. The recharging stations for these types of vehicles might represent a great advantage for the electric grid by facilitating integration of renewable and distributed energy production. This book presents a broad review from analyzing current literature to on-going research projects about the new power technologies related to the various charging architectures for electric and plug-in hybrid vehicles. Specifically focusing on DC fast charging operations, as well as, grid-connected power converters and the full range of energy storage systems. These key components are analyzed for distributed generation and charging system integration into micro-grids. The authors demonstrate that these storage systems represent effective interfaces for the control and management of renewable and sustainable distributed energy resources. New standards and applications are emerging from micro-grid pilot projects around the world and case studies demonstrate the convenience and feasibility of distributed energy management. The material in this unique volume discusses potential avenues for further research toward achieving more reliable, more secure and cleaner energy.




Small Electric Vehicles


Book Description

This edited open access book gives a comprehensive overview of small and lightweight electric three- and four-wheel vehicles with an international scope. The present status of small electric vehicle (SEV) technologies, the market situation and main hindering factors for market success as well as options to attain a higher market share including new mobility concepts are highlighted. An increased usage of SEVs can have different impacts which are highlighted in the book in regard to sustainable transport, congestion, electric grid and transport-related potentials. To underline the effects these vehicles can have in urban areas or rural areas, several case studies are presented covering outcomes of pilot projects and studies in Europe. A study of the operation and usage in the Global South extends the scope to a global scale. Furthermore, several concept studies and vehicle concepts on the market give a more detailed overview and show the deployment in different applications.




E-Mobility


Book Description

The book provides easy interpretable explanations for the key technologies involved in Electric Vehicles and Hybrid Electric Vehicles. The authors discuss the various electrical machines, drives, and controls used in EV and HEV. The book provides a detailed coverage of Regenerative Braking Systems used in EV and HEV. The book also illustrates the battery technology and battery management systems in EV and HEV. This book is intended for academicians, researchers and industrialists. In addition, this book has the following features Discusses the various Economic and Environmental Impact of Electric and Hybrid Electric Vehicles Discusses the role of Artificial Intelligence in Electric / Hybrid Electric Vehicles Illustrates the concept of Vehicle to Grid Technology and the smart charging station infrastructure and issues involved in the same Elucidates the concept of Internet of Vehicles Presents the latest research and applications in alternate energy vehicles