Inhaled Pharmaceutical Product Development Perspectives


Book Description

Inhaled Pharmaceutical Product Development Perspectives: Challenges and Opportunities describes methods and procedures for consideration when developing inhaled pharmaceuticals, while commenting on product development strategies and their suitability to support regulatory submission. It bridges the gap between the aspirations of scientists invested in new technology development and the requirements that must be met for any new product. The book brings together emerging analytical and inhalation technologies, providing perspectives that illuminate formulation and device design, development, regulatory compliance, and practice. Focusing on underlying scientific and technical principles known to be acceptable from the current regulatory perspective, this monograph will remain useful as a high-level guide to inhaled product development for the foreseeable future. - Discusses development strategies and best practices in the context of regulatory requirements - Written by a broadly qualified expert drawing on the knowledge and critical opinions of key individuals in the field - Includes a foreword by Charles G. Thiel




Inhaled Medicines


Book Description

Inhaled medicines are widely used to treat pulmonary and systemic diseases. The efficacy and safety of these medicines can be influenced by the deposited fraction, the regional deposition pattern within the lungs and by post-depositional events such as drug dissolution, absorption and clearance from the lungs. Optimizing performance of treatments thus requires that we understand and are able to quantify these product and drug attributes. Inhaled Medicines: Optimizing Development through Integration of In Silico, In Vitro and In Vivo Approaches explores the current state of the art with respect to inhalation drug delivery, technologies available to assess product performance, and novel in silico methods now available to link in vitro product performance to clinical performance. Recent developments in the latter field, especially the prospect of integration of three-dimensional Computational Fluid Particle Methods (3D-CFPD) with physiologically based pharmacokinetic (PBPK models), unlocks the potential for in silico population studies that can help inform and optimize treatment and product development strategies. In this highly multidisciplinary field, where progress occurs at the intersection of several disciplines of engineering and science, this work aims to integrate current knowledge and understanding and to articulate a clear vision for future developments. ? Considers the healthcare needs driving the field, and where inhaled drugs could have the maximum impact ? Gives a concise account of the state of the art in key areas and technologies such as device and formulation technologies, clinically relevant in vitro performance assessment, medical imaging, as well as in silico modelling and simulation ? Articulates how the combination of in vitro product performance data, medical imaging and simulations technologies in the framework of large scale in silico pre-clinical trials could revolutionize the field ? Provides systematic and thorough referencing to sources offering a more-in-depth analysis of technical issues




The Mechanics of Inhaled Pharmaceutical Aerosols


Book Description

The Mechanics of Inhaled Pharmaceutical Aerosols, An Introduction provides a unique and comprehensive treatment of the mechanics of inhaled pharmaceutical aerosols. The book covers a wide range of topics and many new perspectives are given by drawing on research from a variety of fields. Novel, in-depth expositions of the most common delivery devices are given, including nebulizers, dry powder inhalers and propellant metered dose inhalers. The behaviour of aerosols in the respiratory tract is explained in detail, with complete coverage of the fundamentals of current deposition models. The book begins by providing a comprehensive introduction to aspects of aerosol mechanics that are relevant to inhaled pharmaceutical aerosols. It then gives an exhaustive pedagogical description of the behaviour of evaporating and condensing droplets (both aqueous and propellant-based), an introductory chapter on lung geometry and inhalation patterns, and coverage of relevant aspects of fluid mechanics in the lung. Finally, the book provides invaluable, detailed coverage on the mechanics of common pharmaceutical aerosol delivery systems and deposition in the respiratory tract. Throughout the book are many detailed numerical examples that apply the salient concepts to typical inhaled pharmaceutical aerosols. This book will be of interest to scientists and engineers involved in the research and development of inhaled pharmaceutical aerosol products. Experienced practitioners will find many new perspectives that will greatly enhance their understanding of this complex and rapidly growing field. For those delivering therapeutic agents to the lung, this book is a must-have. Students and academics will find this book an invaluable tool and for newcomers it is a worthy guide to the diverse fields that must be understood to work in the area of inhaled pharmaceutical aerosols.




Drug Delivery Approaches


Book Description

Explore this comprehensive discussion of the application of physiologically- and physicochemical-based models to guide drug delivery edited by leading experts in the field Drug Delivery Approaches: Perspectives from Pharmacokinetics and Pharmacodynamics delivers a thorough discussion of drug delivery options to achieve target profiles and approaches as defined by physical and pharmacokinetic models. The book offers an overview of drug absorption and physiological models, chapters on oral delivery routes with a focus on both PBPK and multiple dosage form options. It also provides an explanation of the pharmacokinetics of the formulation of drugs delivered by systemic transdermal routes. The distinguished editors have included practical and accessible resources that address the biological and delivery approaches to pulmonary and mucosal delivery of drugs. Emergency care settings are also described, with explorations of the relationship between parenteral infusion profiles and PK/PD. The future of drug delivery is addressed via discussions of virtual experiments to elucidate mechanisms and approaches to drug delivery and personalized medicine. Readers will also benefit from the inclusion of: A thorough introduction to the utility of mathematical models in drug development and delivery An exploration of the techniques and applications of physiologically based models to drug delivery Discussions of oral delivery and pharmacokinetic models and oral site-directed delivery A review of integrated transdermal delivery and pharmacokinetics in development An examination of virtual experiment methods for integrating pharmacokinetic, pharmacodynamic, and drug delivery mechanisms Alternative endpoints to pharmacokinetics for topical delivery Perfect for researchers, industrial scientists, graduate students, and postdoctoral students in the area of pharmaceutical science and engineering, Drug Delivery Approaches: Perspectives from Pharmacokinetics and Pharmacodynamics will also earn a place in the libraries of formulators, pharmacokineticists, and clinical pharmacologists.




Pulmonary Drug Delivery


Book Description

Drug therapy via inhalation route is at the cutting edge of modern drug delivery research. There has been significant progress on the understanding of drug therapy via inhalation products. However, there are still problems associated with their formulation design, including the interaction between the active pharmaceutical ingredient(s) (APIs), excipients and devices. This book seeks to cover some of the most pertinent issues and challenges of such formulation design associated with industrial production and desirable clinical outcome. The chapter topics have been selected with a view to integrating the factors that require consideration in the selection and design of device and formulation components which impact upon patient usability and clinical effectiveness. The challenges involved with the delivery of macromolecules by inhalation to both adult and pediatric patients are also covered. Written by leading international experts from both academia and industry, the book will help readers (formulation design scientists, researchers and post-graduate and specialized undergraduate students) develop a deep understanding of key aspects of inhalation formulations as well as detail ongoing challenges and advances associated with their development.




Leachables and Extractables Handbook


Book Description

A practical and science-based approach for addressing toxicological concerns related to leachables and extractables associated with inhalation drug products Packaging and device components of Orally Inhaled and Nasal Drug Products (OINDP) such as metered dose inhalers, dry powder inhalers, and nasal sprays pose potential safety risks from leachables and extractables, chemicals that can be released or migrate from these components into the drug product. Addressing the concepts, background, historical use, and development of safety thresholds and their utility for qualifying leachables and extractables in OINDP, the Leachables and Extractables Handbook takes a practical approach to familiarize readers with the recent recommendations for safety and risk assessment established through a joint effort of scientists from the FDA, academia, and industry. Coverage includes best practices for the chemical evaluation and management of leachables and extractables throughout the pharmaceutical product life cycle, as well as: Guidance for pharmaceutical professionals to qualify and risk-assess container closure system leachables and extractables in drug products Principles for defining toxicological safety thresholds that are applicable to OINDP and potentially applicable to other drug products Regulatory perspectives, along with an appendix of key terms and definitions, case studies, and sample protocols Analytical chemists, packaging and device engineers, formulation development scientists, component suppliers, regulatory affairs specialists, and toxicologists will all benefit from the wealth of information offered in this important text.




Respiratory Drug Delivery (1989)


Book Description

The focus of this book is on subjects related to drug delivery to the lung. The text spans topics from aerosol deposition through pharmaceutical chemistry and formulation to the final clinical evaluation of pharmaceutical products. Utilizing a multi-disciplinary approach, the chapters consider toxicology from the point of view of drugs and pharmaceutical excipients used in aerosols.




Metered Dose Inhaler Technology


Book Description

Metered Dose Inhaler Technology explores the technologies of pressurized metered dose inhalation (MDI) delivery systems and provides practical, easy-to-use guidance to effective product formulation. With contributions from an international panel of authors, the book addresses the global phase-out of chloroflurocarbon chemicals (CFCs), the generation of propellant systems to replace them, and their associated new medications and therapies. Topics include the manufacture of metered dose inhalers, particle size analysis in inhalation therapy, development and testing, pharmcokinetics and metabolism of propellants, toxicology, and more.




Advances in Pulmonary Drug Delivery


Book Description

The respiratory tract has been used to deliver biologically active chemicals into the human body for centuries. However, the lungs are complex in their anatomy and physiology, which poses challenges to drug delivery. Inhaled formulations are generally more sophisticated than those for oral and parenteral administration. Pulmonary drug development is therefore a highly specialized area because of its many unique issues and challenges. Rapid progress is being made and offers novel solutions to existing treatment problems. Advances in Pulmonary Drug Delivery highlights the latest developments in this field.




Handbook of Lung Targeted Drug Delivery Systems


Book Description

Handbook of Lung Targeted Drug Delivery Systems: Recent Trends and Clinical Evidences covers every aspect of the drug delivery to lungs, the physiology and pharmacology of the lung, modelling for lung delivery, drug devices focused on lung treatment, regulatory requirements, and recent trends in clinical applications. With the advent of nano sciences and significant development in the nano particulate drug delivery systems there has been a renewed interest in the lung as an absorption surface for various drugs. The emergence of the COVID-19 virus has brought lung and lung delivery systems into focus, this book covers new developments and research used to address the prevention and treatment of respiratory diseases. Written by well-known scientists with years of experience in the field this timely handbook is an excellent reference book for the scientists and industry professionals. Key Features: Focuses particularly on the chemistry, clinical pharmacology, and biological developments in this field of research. Presents comprehensive information on emerging nanotechnology applications in diagnosing and treating pulmonary diseases Explores drug devices focused on lung treatment, regulatory requirements, and recent trends in clinical applications Examines specific formulations targeted to pulmonary systems