Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations


Book Description

This work was initiated in the summer of 1985 while all of the authors were at the Center of Nonlinear Studies of the Los Alamos National Laboratory; it was then continued and polished while the authors were at Indiana Univer sity, at the University of Paris-Sud (Orsay), and again at Los Alamos in 1986 and 1987. Our aim was to present a direct geometric approach in the theory of inertial manifolds (global analogs of the unstable-center manifolds) for dissipative partial differential equations. This approach, based on Cauchy integral mani folds for which the solutions of the partial differential equations are the generating characteristic curves, has the advantage that it provides a sound basis for numerical Galerkin schemes obtained by approximating the inertial manifold. The work is self-contained and the prerequisites are at the level of a graduate student. The theoretical part of the work is developed in Chapters 2-14, while in Chapters 15-19 we apply the theory to several remarkable partial differ ential equations.







Probability and Partial Differential Equations in Modern Applied Mathematics


Book Description

"Probability and Partial Differential Equations in Modern Applied Mathematics" is devoted to the role of probabilistic methods in modern applied mathematics from the perspectives of both a tool for analysis and as a tool in modeling. There is a recognition in the applied mathematics research community that stochastic methods are playing an increasingly prominent role in the formulation and analysis of diverse problems of contemporary interest in the sciences and engineering. A probabilistic representation of solutions to partial differential equations that arise as deterministic models allows one to exploit the power of stochastic calculus and probabilistic limit theory in the analysis of deterministic problems, as well as to offer new perspectives on the phenomena for modeling purposes. There is also a growing appreciation of the role for the inclusion of stochastic effects in the modeling of complex systems. This has led to interesting new mathematical problems at the interface of probability, dynamical systems, numerical analysis, and partial differential equations. This volume will be useful to researchers and graduate students interested in probabilistic methods, dynamical systems approaches and numerical analysis for mathematical modeling in the sciences and engineering.




Symmetry and Integration Methods for Differential Equations


Book Description

This text discusses Lie groups of transformations and basic symmetry methods for solving ordinary and partial differential equations. It places emphasis on explicit computational algorithms to discover symmetries admitted by differential equations and to construct solutions resulting from symmetries. This new edition covers contact transformations, Lie-B cklund transformations, and adjoints and integrating factors for ODEs of arbitrary order.




Progress in Analysis


Book Description

The biannual ISAAC congresses provide information about recent progress in the whole area of analysis including applications and computation. This book constitutes the proceedings of the third meeting. Contents: .: Volume 1: Function Spaces and Fractional Calculus (V I Burenkov & S Samko); Asymptotic Decomposition (Methods of Small Parameters, Averaging Theory) (J A Dubinski); Integral Transforms and Applications (S Saitoh et al.); Analytic Functionals, Hyperfunctions and Generalized Functions (M Morimoto & H Komatsu); Geometric Function Theory (G Kohr & M Kohr); omplex Function Spaces (R Aulaskari & I Laine); Value Distribution Theory and Complex Dynamics (C C Yang); Clifford Analysis (K Grlebeck et al.); Octonions (T Dray & C Monogue); Nonlinear Potential Theory (O Martio); Classical and Fine Potential Theory, Holomorphic and Finely Holomorphic Functions (P Tamrazov); Differential Geometry and Control Theory for PDEs (B Gulliver et al.); Differential Geometry and Quantum Physics (-); Dynamical Systems (B Fiedler); Attractors for Partial Differential Equations (G Raugel); Spectral Theory of Differential Operators (B Vainberg); Pseudodifferential Operators, Quantization and Signal Analysis (M W Wong); Microlocal Analysis (B-W Schulze & M Korey); Volume 2: Complex and Functional Analytic Methods in PDEs (A Cialdea et al.); Geometric Properties of Solutions of PDEs (R Magnanini); Qualitative Properties of Solutions of Hyperbolic and SchrAdinger Equations (M Reissig & K Yagdjian); Homogenization Moving Boundaries and Porous Media (A Bourgeat & R P Gilbert); Constructive Methods in Applied Problems (P Krutitskii); Waves in Complex Media (R P Gilbert & A Wirgin); Nonlinear Waves (I Lasiecka & H Koch); Mathematical Analysis of Problems in Solid Mechanics (K Hackl & X Li); Direct and Inverse Scattering (L Fishman); Inverse Problems (G N Makrakis et al.); Mathematical Methods in Non-Destructive Evaluation and Non-Destructive Testing (A Wirgin); Numerical Methods for PDEs, Systems and Optimization (A Ben-Israel & I Herrera). Readership: Graduate students and researchers in real, complex, numerical analysis, as well as mathematical physics."




Infinite-Dimensional Dynamical Systems in Mechanics and Physics


Book Description

In this book the author presents the dynamical systems in infinite dimension, especially those generated by dissipative partial differential equations. This book attempts a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics and in other areas of sciences and technology. This second edition has been updated and extended.




Weakly Connected Neural Networks


Book Description

Devoted to local and global analysis of weakly connected systems with applications to neurosciences, this book uses bifurcation theory and canonical models as the major tools of analysis. It presents a systematic and well motivated development of both weakly connected system theory and mathematical neuroscience, addressing bifurcations in neuron and brain dynamics, synaptic organisations of the brain, and the nature of neural codes. The authors present classical results together with the most recent developments in the field, making this a useful reference for researchers and graduate students in various branches of mathematical neuroscience.




Stability and Transition in Shear Flows


Book Description

A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.




Finite Element Analysis of Acoustic Scattering


Book Description

A cognitive journey towards the reliable simulation of scattering problems using finite element methods, with the pre-asymptotic analysis of Galerkin FEM for the Helmholtz equation with moderate and large wave number forming the core of this book. Starting from the basic physical assumptions, the author methodically develops both the strong and weak forms of the governing equations, while the main chapter on finite element analysis is preceded by a systematic treatment of Galerkin methods for indefinite sesquilinear forms. In the final chapter, three dimensional computational simulations are presented and compared with experimental data. The author also includes broad reference material on numerical methods for the Helmholtz equation in unbounded domains, including Dirichlet-to-Neumann methods, absorbing boundary conditions, infinite elements and the perfectly matched layer. A self-contained and easily readable work.




Recent Books