Integral Transforms in Applied Mathematics


Book Description

An intermediate-level text on the use of integral transforms in applied mathematics and engineering. Existing works either cover the subject in more elementary form or are advanced treatises. In a very lucid style the author deals with the use of this important mathematical tool to solve ordinary and partial differential equations in problems in electrical circuits, mechanical vibration and wave motion, heat conduction, and fluid mechanics. The book is divided into five parts covering integral transform pairs, the Laplace transform, Fourier transforms, Hankel transforms, and finite Fourier transforms. A basic knowledge of complex variables and elementary differential equations is assumed. There are many exercises and examples drawn from the above fields, tables of the transform pairs needed in the text, and a glossary of terms with which the student may be unfamiliar. For the student who seeks further background on the subject, an annotated bibliography is provided.




Integral Transforms and Their Applications


Book Description

This book is intended to serve as introductory and reference material for the application of integral transforms to a range of common mathematical problems. It has its im mediate origin in lecture notes prepared for senior level courses at the Australian National University, although I owe a great deal to my colleague Barry Ninham, a matter to which I refer below. In preparing the notes for publication as a book, I have added a considerable amount of material ad- tional to the lecture notes, with the intention of making the book more useful, particularly to the graduate student - volved in the solution of mathematical problems in the physi cal, chemical, engineering and related sciences. Any book is necessarily a statement of the author's viewpoint, and involves a number of compromises. My prime consideration has been to produce a work whose scope is selective rather than encyclopedic; consequently there are many facets of the subject which have been omitted--in not a few cases after a preliminary draft was written--because I v believe that their inclusion would make the book too long.




Applied Integral Transforms


Book Description

This book constructs the kernels of integral transforms by solving the generalized Sturm-Liouville problems associated with the partial differential equations at hand. In the first part of the book, the authors construct the kernels and use them to solve elementary problems of mathematical physics. This part requires little mathematical background and provides an introduction to the subject of integral transforms as it proceeds mainly by examples and includes a variety of exercises. In the second part of the book, the method of integral transforms is used to solve modern applied problems in convective stability, temperature fields in oil strata, and eddy-current testing. The choice of topics reflects the authors' research experience and involvement in industrial applications. The first part of the book is accessible to undergraduates, while the second part is aimed at graduate students and researchers. Because of the applications, the book will interest engineers (especially petroleum engineers) and physicists.




Integral and Discrete Transforms with Applications and Error Analysis


Book Description

This reference/text desribes the basic elements of the integral, finite, and discrete transforms - emphasizing their use for solving boundary and initial value problems as well as facilitating the representations of signals and systems.;Proceeding to the final solution in the same setting of Fourier analysis without interruption, Integral and Discrete Transforms with Applications and Error Analysis: presents the background of the FFT and explains how to choose the appropriate transform for solving a boundary value problem; discusses modelling of the basic partial differential equations, as well as the solutions in terms of the main special functions; considers the Laplace, Fourier, and Hankel transforms and their variations, offering a more logical continuation of the operational method; covers integral, discrete, and finite transforms and trigonometric Fourier and general orthogonal series expansion, providing an application to signal analysis and boundary-value problems; and examines the practical approximation of computing the resulting Fourier series or integral representation of the final solution and treats the errors incurred.;Containing many detailed examples and numerous end-of-chapter exercises of varying difficulty for each section with answers, Integral and Discrete Transforms with Applications and Error Analysis is a thorough reference for analysts; industrial and applied mathematicians; electrical, electronics, and other engineers; and physicists and an informative text for upper-level undergraduate and graduate students in these disciplines.




Integral Transform Techniques for Green's Function


Book Description

This book describes mathematical techniques for integral transforms in a detailed but concise manner. The techniques are subsequently applied to the standard partial differential equations, such as the Laplace equation, the wave equation and elasticity equations. Green’s functions for beams, plates and acoustic media are also shown, along with their mathematical derivations. The Cagniard-de Hoop method for double inversion is described in detail and 2D and 3D elastodynamic problems are treated in full. This new edition explains in detail how to introduce the branch cut for the multi-valued square root function. Further, an exact closed form Green’s function for torsional waves is presented, as well as an application technique of the complex integral, which includes the square root function and an application technique of the complex integral.




Local Fractional Integral Transforms and Their Applications


Book Description

Local Fractional Integral Transforms and Their Applications provides information on how local fractional calculus has been successfully applied to describe the numerous widespread real-world phenomena in the fields of physical sciences and engineering sciences that involve non-differentiable behaviors. The methods of integral transforms via local fractional calculus have been used to solve various local fractional ordinary and local fractional partial differential equations and also to figure out the presence of the fractal phenomenon. The book presents the basics of the local fractional derivative operators and investigates some new results in the area of local integral transforms. - Provides applications of local fractional Fourier Series - Discusses definitions for local fractional Laplace transforms - Explains local fractional Laplace transforms coupled with analytical methods




Weight Theory for Integral Transforms on Spaces of Homogeneous Type


Book Description

This volume gives an account of the current state of weight theory for integral operators, such as maximal functions, Riesz potential, singular integrals and their generalization in Lorentz and Orlicz spaces. Starting with the crucial concept of a space of homogeneous type, it continues with general criteria for the boundedness of the integral operators considered, then address special settings and applications to classical operators in Euclidean spaces.










Mathematics for Physical Chemistry


Book Description

Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The first ten chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. The final chapter discusses mathematical topics needed in the analysis of experimental data. - Numerous examples and problems interspersed throughout the presentations - Each extensive chapter contains a preview, objectives, and summary - Includes topics not found in similar books, such as a review of general algebra and an introduction to group theory - Provides chemistry specific instruction without the distraction of abstract concepts or theoretical issues in pure mathematics