Integrated and Hybrid Process Technology for Water and Wastewater Treatment


Book Description

Tackling the issue of water and wastewater treatment nowadays requires novel approaches to ensure that sustainable development can be achieved. Water and wastewater treatment should not be seen only as an end-of-pipe solution but instead the approach should be more holistic and lead to a more sustainable process. This requires the integration of various methods/processes to obtain the most optimized design. Integrated and Hybrid Process Technology for Water and Wastewater Treatment discusses the state-of-the-art development in integrated and hybrid treatment processes and their applications to the treatment of a vast variety of water and wastewater sources. The approaches taken in this book are categorized as (i) resources recovery and consumption, (ii) optimal performance, (iii) physical and environmental footprints, (iv) zero liquid discharge concept and are (v) regulation-driven. Through these categories, readers will see how such an approach could benefit the water and wastewater industry. Each chapter discusses challenges and prospects of an integrated treatment process in achieving sustainable development. This book serves as a platform to provide ideas and to bridge the gap between laboratory-scale research and practical industry application. Includes comprehensive coverage on integrated and hybrid technology for water and wastewater treatment Takes a new approach in looking at how water and wastewater treatment contributes to sustainable development Provides future direction of research in sustainable water and wastewater treatment




Integrated and Hybrid Process Technology for Water and Wastewater Treatment


Book Description

Tackling the issue of water and wastewater treatment nowadays requires novel approaches to ensure that sustainable development can be achieved. Water and wastewater treatment should not be seen only as an end-of-pipe solution but instead the approach should be more holistic and lead to a more sustainable process. This requires the integration of various methods/processes to obtain the most optimized design. Integrated and Hybrid Process Technology for Water and Wastewater Treatment discusses the state-of-the-art development in integrated and hybrid treatment processes and their applications to the treatment of a vast variety of water and wastewater sources. The approaches taken in this book are categorized as (i) resources recovery and consumption, (ii) optimal performance, (iii) physical and environmental footprints, (iv) zero liquid discharge concept and are (v) regulation-driven. Through these categories, readers will see how such an approach could benefit the water and wastewater industry. Each chapter discusses challenges and prospects of an integrated treatment process in achieving sustainable development. This book serves as a platform to provide ideas and to bridge the gap between laboratory-scale research and practical industry application. - Includes comprehensive coverage on integrated and hybrid technology for water and wastewater treatment - Takes a new approach in looking at how water and wastewater treatment contributes to sustainable development - Provides future direction of research in sustainable water and wastewater treatment




Industrial Water Treatment Process Technology


Book Description

Industrial Water Treatment Process Technology begins with a brief overview of the challenges in water resource management, covering issues of plenty and scarcity-spatial variation, as well as water quality standards. In this book, the author includes a clear and rigorous exposition of the various water resource management approaches such as: separation and purification (end of discharge pipe), zero discharge approach (green process development), flow management approach, and preservation and control approach. This coverage is followed by deeper discussion of individual technologies and their applications. - Covers water treatment approaches including: separation and purification—end of discharge pipe; zero discharge approach; flow management approach; and preservation and control approach - Discusses water treatment process selection, trouble shooting, design, operation, and physico-chemical and treatment - Discusses industry-specific water treatment processes




Membrane-based Hybrid Processes for Wastewater Treatment


Book Description

Membrane-Based Hybrid Processes for Wastewater Treatment analyzes and discusses the potential of membrane-based hybrid processes for the treatment of complex industrial wastewater, the recovery of valuable compounds, and water reutilization. In addition, recent and future trends in membrane technology are highlighted. Industrial wastewater contains a large variety of compounds, such as heavy metals, salts and nutrients, which makes its treatment challenging. Thus, the use of conventional water treatment methods is not always effective. Membrane-based hybrid processes have emerged as a promising technology to treat complex industrial wastewater. - Discusses the properties, mechanisms, advantages, limitations and promising solutions of different types of membrane technologies - Addresses the optimization of process parameters - Describes the performance of different membranes - Presents the potential of Nanotechnology to improve the treatment efficiency of wastewater treatment plants (WWTPs) - Covers the application of membrane and membrane-based hybrid treatment technologies for wastewater treatment - Includes forward osmosis, electrodialysis, and diffusion dialysis - Considers hybrid membrane systems expanded to cover zero liquid discharge, salt recovery, and removal of trace contaminants




Treatment of Micropollutants in Water and Wastewater


Book Description

Over the last few years there has been a growing concern over the increasing concentration of micropollutants originating from a great variety of sources including pharmaceutical, chemical engineering and personal care product industries in rivers, lakes, soil and groundwater. As most of the micropollutants are polar and persistent compounds, they are only partially or not at all removed from wastewater and thus can enter the environment posing a great risk to the biota. It is hypothesized that wastewater is one of the most important point sources for micropollutants. Treatment of Micropollutants in Water and Wastewater gives a comprehensive overview of modern analytical methods and will summarize novel single and hybrid methods to remove continuously emerging contaminants - micropollutants from the aqueous phase. New trends (e.g. sensor technology, nanotechnology and hybrid treatment technologies) are described in detail. The book is very timely because the new techniques are still in the development phase and have to be realized not only in the laboratory but also on a larger scale. The content of the book is divided into chapters that present current descriptive and analytical methods that are available to detect and measure micropollutants together with detailed information on various chemical, biological and physicochemical methods that have evolved over the last few decades. Treatment of Micropollutants in Water and Wastewater will also enable readers to make well informed choices through providing an understanding of why and how micropollutants must be removed from water sources, and what are the most appropriate and available techniques for providing a cost and technologically effective and sustainable solutions for reaching the goal of micropollutant-free water and wastewater. The book will be suitable for water and wastewater professionals as well for students and researchers in civil engineering, environmental engineering and process engineering fields.




Sustainable Water and Wastewater Processing


Book Description

Sustainable Water and Wastewater Processing covers the 12 most current topics in the field of sustainable water processing, with emphasis given to water as a resource (quality, supply, distribution, and aquifer recharge). Topics covered include emerging sustainable technologies for potable and wastewater treatment, water reuse and recycling, advanced membrane processes, desalination technologies, integrated and hybrid technologies, process modeling, advanced oxidative and catalytic processes, environmentally, economically and socially sustainable technology for water treatment, industrial water treatment, reuse and recovery of materials, and emerging nanotechnology and biotechnology for water processing. Responding to the goals of sustainability requires the maximum utilization of all water resources, water processing with restricted energy costs and reduced greenhouse gas production. Following these trends, this book covers all the important aspects of sustainable water processing and support.




Industrial Wastewater Treatment, Recycling and Reuse


Book Description

Industrial Wastewater Treatment, Recycling and Reuse is an accessible reference to assist you when handling wastewater treatment and recycling. It features an instructive compilation of methodologies, including advanced physico-chemical methods and biological methods of treatment. It focuses on recent industry practices and preferences, along with newer methodologies for energy generation through waste. The book is based on a workshop run by the Indus MAGIC program of CSIR, India. It covers advanced processes in industrial wastewater treatment, applications, and feasibility analysis, and explores the process intensification approach as well as implications for industrial applications. Techno-economic feasibility evaluation is addressed, along with a comparison of different approaches illustrated by specific case studies. Industrial Wastewater Treatment, Recycling and Reuse introduces you to the subject with specific reference to problems currently being experienced in different industry sectors, including the petroleum industry, the fine chemical industry, and the specialty chemicals manufacturing sector. - Provides practical solutions for the treatment and recycling of industrial wastewater via case studies - Instructive articles from expert authors give a concise overview of different physico-chemical and biological methods of treatment, cost-to-benefit analysis, and process comparison - Supplies you with the relevant information to make quick process decisions




Integrated Environmental Technologies for Wastewater Treatment and Sustainable Development


Book Description

Integrated Environmental Technologies for Wastewater Treatment and Sustainable Development provides comprehensive and advanced information on integrated environmental technologies and their limitations, challenges and potential applications in treatment of environmental pollutants and those that are discharged in wastewater from industrial, domestic and municipal sources. The book covers applied and recently developed integrated technologies to solve five major trends in the field of wastewater treatment, including nutrient removal and resource recovery, recalcitrant organic and inorganic compounds detoxification, energy saving, and biofuel and bioenergy production for environmental sustainability. The book provides future directions to young researchers, scientists and professionals who are working in the field of bioremediation and phytoremediation to remediate wastewater pollutants at laboratory and field scale, for sustainable development. - Illustrates the importance of various advanced oxidation processes in effluent treatment plants - Describes underlying mechanisms of constructed wetland-microbial fuel cell technologies for the degradation and detoxification of emerging organic and inorganic contaminants discharged in wastewater - Highlights the reuse and recycling of wastewater and recovery of value-added resources from wastewater - Focuses on recent advances and challenges in integrated environmental technologies, constructed wetland-microbial fuel cell, microbial electrochemical-constructed wetlands, biofilm reactor-constructed wetland, and anammox- microbial fuel cell technology for sustainable development - Illustrates the importance of microbes and plants in bio/phytoremediation and wastewater treatment




Sustainable Water and Wastewater Processing


Book Description

Sustainable Water and Wastewater Processing covers the 12 most current topics in the field of sustainable water processing, with emphasis given to water as a resource (quality, supply, distribution, and aquifer recharge). Topics covered include emerging sustainable technologies for potable and wastewater treatment, water reuse and recycling, advanced membrane processes, desalination technologies, integrated and hybrid technologies, process modeling, advanced oxidative and catalytic processes, environmentally, economically and socially sustainable technology for water treatment, industrial water treatment, reuse and recovery of materials, and emerging nanotechnology and biotechnology for water processing. Responding to the goals of sustainability requires the maximum utilization of all water resources, water processing with restricted energy costs and reduced greenhouse gas production. Following these trends, this book covers all the important aspects of sustainable water processing and support. - Covers cutting-edge topics of water process engineering, sustainability and energy efficiency - Fills the transfer knowledge gap between academia and industry by analyzing the associated environmental, economic and sustainability challenges of water processing - Includes theoretical and applied research and technological and industrial solutions for sustainable, economic and large scale water treatment, recycling and reutilization - Analyzes potentiality and economic feasibility of already commercialized processes




Environmental Approach to Remediate Refractory Pollutants from Industrial Wastewater Treatment Plant


Book Description

Environmental Approach to Remediate Refractory Pollutants from Industrial Wastewater Treatment Plants discusses the emerging trends in the bioremediation of hazardous pollutants found in wastewater, including the fate of pollutants produced after the treatment process both at the laboratory scale and at the industrial scale. Describing a broad area of biological processes and water research – considered key components for advanced water purification – it also includes the desalination technologies that remove, reduce, or neutralize water contaminants that threaten human health. Exploring the unique biological aspects of the wastewater treatment process, the book highlights the advantages they provide for engineering applications in industry, with each chapter covering a different biological-based approach, examining the basic principles, practical applications, recent breakthroughs and associated limitations. Covering advancements in biological treatments, advanced oxidation techniques and membrane technology to remove water pollutants, this book will be of interest to all those working in bioremediation related fields. - Describes emerging technologies in industrial pollutants removal from wastewater - Includes applications in treatment, remediation, sensing, and pollution prevention processes - Discusses impacts on long-term quality, availability, and viability of water