Integrated Optoelectronics


Book Description

The English edition is based upon the second edition of the German version of the book. The author would like to thank Mr. A.H. Armstrong for providing the basic English manuscript of the text, his critical reading, and valuable comments. Thanks are also due to Mrs. A. Demmer, Mr. J. Matern, Mrs. B. Titze and Mrs. S. Pfetsch for preparing the camera ready manuscript and the figures. Springer Verlag has generously supported the project and cooperating with them has been a great pleasure. Ulm, April 1992 K.J. Ebeling Preface to the First German Edition This book is a comprehensive introduction to waveguide optics and photonics in semiconductor crystals. Interest is centered on integrated optoelectronic devices for the transmission and processing of optical signals. These optical communi cations engineering devices are becoming increasingly important for optical disk storage systems, for optical chip-chip interconnections and of course for optical fiber transmission and exchange.




Integrated Optoelectronics


Book Description

Integrated optoelectronics is becoming ever more important to communications, computer, and consumer industries. It is the enabling technology in a variety of systems, ranging from low-cost, robust optical componentsin consumer electronics to high-performance broadband information networks capable of supporting video and multimedia conferencing. The requirements for producing low-cost, highly reliable components for deployment in these new systems have created a technology challenge. Integrated optoelectronics promises to meet the performance and cost objectives of these applications by integrating both optical and electronic components in a highly functional chip. This book provides an overview of this exciting newtechnology.Integrated Optoelectronics brings together a group of acknowledged experts from both universities and industry around the world to focus on a common theme of integration. These experts have reported not only on the state-of-the-art, but also on the physics and design experience that goes into implementing integrated chips and modules. This book is a cohesive series of articles that includes a discussion of the intimate trade-offs between materials, processes, devices, functional blocks, packaging,and systems requirements in a truly integrated technology. This integration encompasses electrical, optoelectronic, and optical devices onto monolithic or hybrid chips, and into multichip modules.This volume surveys state-of-the-art research activities in integrated optoelectronics and gathers most of the important references into a single place. It outlines the major issues involved in integrating both optical and electronic components, provides an overview of design and fabrication concepts, and discusses the issues involved in bringing these new chips to the marketplace.This exciting new book:Provides a broad overview of the optoelectronic field, including materials processing, devices, and systems applicationsFeatures authors who are acknowledged research experts in this field, from both industry and universities around the worldIncludes new information on device fabrication, including the latest epitaxial growth and lift-off techniques to permit the mixing of dissimilar materials onto single chipsCovers planar processed laser fabrication leading to wafer level automated testingDiscusses optimization of devices for integration, including a detailed treatment of the vertical emitting laser and theoretical and experimental coverage of optimization of photodetectors for integration into receiver chipsDescribes design approaches for multifunctional chips, including photonic circuits for all-optical networks and the design of integrated optoelectronic chips with lasers, photodiodes, and electronic ICsCovers the infrastructure needed to support an integrated technology, including automated design systems which treat both optical and electrical circuits, and multichip packaging approaches for both optical and IC chips




Integrated Optics: Theory and Technology


Book Description

Our intent in producing this book was to provide a text that would be comprehensive enough for an introductory course in integrated optics, yet concise enough in its mathematical derivations to be easily readable by a practicing engineer who desires an overview of the field. The response to the first edition has indeed been gratifying; unusually strong demand has caused it to be sold out during the initial year of publication, thus providing us with an early opportunity to produce this updated and improved second edition. This development is fortunate, because integrated optics is a very rapidly progressing field, with significant new research being regularly reported. Hence, a new chapter (Chap. 17) has been added to review recent progress and to provide numerous additional references to the relevant technical literature. Also, thirty-five new problems for practice have been included to supplement those at the ends of chapters in the first edition. Chapters I through 16 are essentially unchanged, except for brief updating revisions and corrections of typographical errors. Because of the time limitations imposed by the need to provide an uninterrupted supply of this book to those using it as a course text, it has been possible to include new references and to briefly describe recent developments only in Chapter 17. However, we hope to provide details of this continuing progress in a future edition.




Optoelectronic Devices


Book Description

Optoelectronic devices transform electrical signals into optical signals (and vice versa) by utilizing the interaction of electrons and light. Advanced software tools for the design and analysis of such devices have been developed in recent years. However, the large variety of materials, devices, physical mechanisms, and modeling approaches often makes it difficult to select appropriate theoretical models or software packages. This book presents a review of devices and advanced simulation approaches written by leading researchers and software developers. It is intended for scientists and device engineers in optoelectronics who are interested in using advanced software tools. Each chapter includes the theoretical background as well as practical simulation results that help the reader to better understand internal device physics. Real-world devices such as edge-emitting or surface-emitting laser diodes, light-emitting diodes, solar cells, photodetectors, and integrated optoelectronic circuits are investigated. The software packages described in the book are available to the public, on a commercial or noncommercial basis, so that the interested reader is quickly able to perform similar simulations.




Handbook of Optoelectronics


Book Description

Handbook of Optoelectronics offers a self-contained reference from the basic science and light sources to devices and modern applications across the entire spectrum of disciplines utilizing optoelectronic technologies. This second edition gives a complete update of the original work with a focus on systems and applications. Volume I covers the details of optoelectronic devices and techniques including semiconductor lasers, optical detectors and receivers, optical fiber devices, modulators, amplifiers, integrated optics, LEDs, and engineered optical materials with brand new chapters on silicon photonics, nanophotonics, and graphene optoelectronics. Volume II addresses the underlying system technologies enabling state-of-the-art communications, imaging, displays, sensing, data processing, energy conversion, and actuation. Volume III is brand new to this edition, focusing on applications in infrastructure, transport, security, surveillance, environmental monitoring, military, industrial, oil and gas, energy generation and distribution, medicine, and free space. No other resource in the field comes close to its breadth and depth, with contributions from leading industrial and academic institutions around the world. Whether used as a reference, research tool, or broad-based introduction to the field, the Handbook offers everything you need to get started. John P. Dakin, PhD, is professor (emeritus) at the Optoelectronics Research Centre, University of Southampton, UK. Robert G. W. Brown, PhD, is chief executive officer of the American Institute of Physics and an adjunct full professor in the Beckman Laser Institute and Medical Clinic at the University of California, Irvine.




Diode Lasers and Photonic Integrated Circuits


Book Description

Diode Lasers and Photonic Integrated Circuits, Second Edition provides a comprehensive treatment of optical communication technology, its principles and theory, treating students as well as experienced engineers to an in-depth exploration of this field. Diode lasers are still of significant importance in the areas of optical communication, storage, and sensing. Using the the same well received theoretical foundations of the first edition, the Second Edition now introduces timely updates in the technology and in focus of the book. After 15 years of development in the field, this book will offer brand new and updated material on GaN-based and quantum-dot lasers, photonic IC technology, detectors, modulators and SOAs, DVDs and storage, eye diagrams and BER concepts, and DFB lasers. Appendices will also be expanded to include quantum-dot issues and more on the relation between spontaneous emission and gain.




Integrated Optoelectronics


Book Description




Integrated Optics


Book Description

This work addresses integrated optics from both the theory and practical modelling standpoints, describing recent work on beam propagation, planar spectrographs, four-wave coupled mode array, CAD for integrated optics and component cost modelling.







High-Speed Electronics and Optoelectronics


Book Description

This authoritative account of electronic and optoelectronic devices covers the fundamental principles of operation, and, uniquely, their circuit applications too.