INTELLIGENCE FOR NONLINEAR DYNAMICS AND SYNCHRONISATION


Book Description

Over the past years, the appropriateness of Computational Intelligence (CI) techniques in modeling and optimization tasks pertaining to complex nonlinear dynamic systems has become indubitable, as attested by a large number of studies reporting on the successful application of CI models in nonlinear science (for example, adaptive control, signal processing, medical diagnostic, pattern formation, living systems, etc.). This volume summarizes the state-of-the-art of CI in the context of nonlinear dynamic systems and synchronization. Aiming at fostering new breakthroughs, the chapters in the book focus on theoretical, experimental and computational aspects of recent advances in nonlinear science intertwined with computational intelligence techniques. In addition, all the chapters have a tutorial-oriented structure.







Recent Advances in Nonlinear Dynamics and Synchronization


Book Description

In essence, the dynamics of real world systems (i.e. engineered systems, natural systems, social systesms, etc.) is nonlinear. The analysis of this nonlinear character is generally performed through both observational and modeling processes aiming at deriving appropriate models (mathematical, logical, graphical, etc.) to simulate or mimic the spatiotemporal dynamics of the given systems. The complex intrinsic nature of these systems (i.e. nonlinearity and spatiotemporal dynamics) can lead to striking dynamical behaviors such as regular or irregular, stable or unstable, periodicity or multi-periodicity, torus or chaotic dynamics. The various potential applications of the knowledge about such dynamics in technical sciences (engineering) are being intensively demonstrated by diverse ongoing research activities worldwide. However, both the modeling and the control of the nonlinear dynamics in a range of systems is still not yet well-understood (e.g. system models with time varying coefficients, immune systems, swarm intelligent systems, chaotic and fractal systems, stochastic systems, self-organized systems, etc.). This is due amongst others to the challenging task of establishing a precise and systematic fundamental or theoretical framework (e.g. methods and tools) to analyze, understand, explain and predict the nonlinear dynamical behavior of these systems, in some cases even in real-time. The full insight in systems’ nonlinear dynamic behavior is generally achieved through approaches involving analytical, numerical and/or experimental methods.




Intelligence for Nonlinear Dynamics and Synchronization


Book Description

Over the past years, the appropriateness of Computational Intelligence (CI) techniques in modeling and optimization tasks pertaining to complex nonlinear dynamic systems has become indubitable, as attested by a large number of studies reporting on the successful application of CI models in nonlinear science (for example, adaptive control, signal processing, medical diagnostic, pattern formation, living systems, etc.). This volume summarizes the state-of-the-art of CI in the context of nonlinear dynamic systems and synchronization. Aiming at fostering new breakthroughs, the chapters in the book focus on theoretical, experimental and computational aspects of recent advances in nonlinear science intertwined with computational intelligence techniques. In addition, all the chapters have a tutorial-oriented structure.




Recent Advances in Nonlinear Dynamics and Synchronization


Book Description

The selected contributions of this book shed light on a series of interesting aspects related to nonlinear dynamics and synchronization with the aim of demonstrating some of their interesting applications in a series of selected disciplines. This book contains thirteenth chapters which are organized around five main parts. The first part (containing five chapters) does focus on theoretical aspects and recent trends of nonlinear dynamics and synchronization. The second part (two chapters) presents some modeling and simulation issues through concrete application examples. The third part (two chapters) is focused on the application of nonlinear dynamics and synchronization in transportation. The fourth part (two chapters) presents some applications of synchronization in security-related system concepts. The fifth part (two chapters) considers further applications areas, i.e. pattern recognition and communication engineering.




Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019


Book Description

This book presents the proceedings of the 5th International Conference on Advanced Intelligent Systems and Informatics 2019 (AISI2019), which took place in Cairo, Egypt, from October 26 to 28, 2019. This international and interdisciplinary conference, which highlighted essential research and developments in the fields of informatics and intelligent systems, was organized by the Scientific Research Group in Egypt (SRGE). The book is divided into several sections, covering the following topics: machine learning and applications, swarm optimization and applications, robotic and control systems, sentiment analysis, e-learning and social media education, machine and deep learning algorithms, recognition and image processing, intelligent systems and applications, mobile computing and networking, cyber-physical systems and security, smart grids and renewable energy, and micro-grid and power systems.




Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020


Book Description

This book presents the proceedings of the 6th International Conference on Advanced Intelligent Systems and Informatics 2020 (AISI2020), which took place in Cairo, Egypt, from October 19 to 21, 2020. This international and interdisciplinary conference, which highlighted essential research and developments in the fields of informatics and intelligent systems, was organized by the Scientific Research Group in Egypt (SRGE). The book is divided into several sections, covering the following topics: Intelligent Systems, Deep Learning Technology, Document and Sentiment Analysis, Blockchain and Cyber Physical System, Health Informatics and AI against COVID-19, Data Mining, Power and Control Systems, Business Intelligence, Social Media and Digital Transformation, Robotic, Control Design, and Smart Systems.




Backstepping Control of Nonlinear Dynamical Systems


Book Description

Backstepping Control of Nonlinear Dynamical Systems addresses both the fundamentals of backstepping control and advances in the field. The latest techniques explored include 'active backstepping control', 'adaptive backstepping control', 'fuzzy backstepping control' and 'adaptive fuzzy backstepping control'. The reference book provides numerous simulations using MATLAB and circuit design. These illustrate the main results of theory and applications of backstepping control of nonlinear control systems. Backstepping control encompasses varied aspects of mechanical engineering and has many different applications within the field. For example, the book covers aspects related to robot manipulators, aircraft flight control systems, power systems, mechanical systems, biological systems and chaotic systems. This multifaceted view of subject areas means that this useful reference resource will be ideal for a large cross section of the mechanical engineering community. - Details the real-world applications of backstepping control - Gives an up-to-date insight into the theory, uses and application of backstepping control - Bridges the gaps for different fields of engineering, including mechanical engineering, aeronautical engineering, electrical engineering, communications engineering, robotics and biomedical instrumentation




Advances in Chaos Theory and Intelligent Control


Book Description

The book reports on the latest advances in and applications of chaos theory and intelligent control. Written by eminent scientists and active researchers and using a clear, matter-of-fact style, it covers advanced theories, methods, and applications in a variety of research areas, and explains key concepts in modeling, analysis, and control of chaotic and hyperchaotic systems. Topics include fractional chaotic systems, chaos control, chaos synchronization, memristors, jerk circuits, chaotic systems with hidden attractors, mechanical and biological chaos, and circuit realization of chaotic systems. The book further covers fuzzy logic controllers, evolutionary algorithms, swarm intelligence, and petri nets among other topics. Not only does it provide the readers with chaos fundamentals and intelligent control-based algorithms; it also discusses key applications of chaos as well as multidisciplinary solutions developed via intelligent control. The book is a timely and comprehensive reference guide for graduate students, researchers, and practitioners in the areas of chaos theory and intelligent control.




Fuzzy Logic and Neural Networks for Hybrid Intelligent System Design


Book Description

This book covers recent developments on fuzzy logic, neural networks and optimization algorithms, as well as their hybrid combinations. In addition, the above-mentioned methods are applied to areas such as intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction and optimization of complex problems. Nowadays, the main topic of the book is highly relevant, as most current intelligent systems and devices in use utilize some form of intelligent feature to enhance their performance. In addition, on the theoretical side, new and advanced models and algorithms of type-2 and type-3 fuzzy logic are presented, which are of great interest to researchers working on these areas. Also, new nature-inspired optimization algorithms and innovative neural models are put forward in the manuscript, which are very popular subjects, at this moment. There are contributions on theoretical aspects as well as applications, which make the book very appealing to a wide audience, ranging from researchers to professors and graduate students.