Intelligent and Soft Computing Systems for Green Energy


Book Description

INTELLIGENT AND SOFT COMPUTING SYSTEMS FOR GREEN ENERGY Written and edited by some of the world’s top experts in the field, this exciting new volume provides state-of-the-art research and the latest technological breakthroughs in next-generation computing systems for the energy sector, striving to bring the science toward sustainability. Real-world problems need intelligent solutions. Across many industries and fields, intelligent and soft computing systems, using such developing technologies as artificial intelligence and Internet of Things, are quickly becoming important tools for scientists, engineers, and other professionals for solving everyday problems in practical situations. This book aims to bring together the research that has been carried out in the field of intelligent and soft computing systems. Intelligent and soft computing systems involves expertise from various domains of research, such as electrical engineering, computer engineering, and mechanical engineering. This book will serve as a point of convergence wherein all these domains come together. The various chapters are configured to address the challenges faced in intelligent and soft computing systems from various fields and possible solutions. The outcome of this book can serve as a potential resource for industry professionals and researchers working in the domain of intelligent and soft computing systems. To list a few soft computing techniques, neural-based load forecasting, IoT-enabled smart grids, and blockchain technology for energy trading. Whether for the veteran engineer or the student learning the latest breakthroughs, this exciting new volume is a must-have for any library.




Soft Computing in Green and Renewable Energy Systems


Book Description

Soft Computing in Green and Renewable Energy Systems provides a practical introduction to the application of soft computing techniques and hybrid intelligent systems for designing, modeling, characterizing, optimizing, forecasting, and performance prediction of green and renewable energy systems. Research is proceeding at jet speed on renewable energy (energy derived from natural resources such as sunlight, wind, tides, rain, geothermal heat, biomass, hydrogen, etc.) as policy makers, researchers, economists, and world agencies have joined forces in finding alternative sustainable energy solutions to current critical environmental, economic, and social issues. The innovative models, environmentally benign processes, data analytics, etc. employed in renewable energy systems are computationally-intensive, non-linear and complex as well as involve a high degree of uncertainty. Soft computing technologies, such as fuzzy sets and systems, neural science and systems, evolutionary algorithms and genetic programming, and machine learning, are ideal in handling the noise, imprecision, and uncertainty in the data, and yet achieve robust, low-cost solutions. As a result, intelligent and soft computing paradigms are finding increasing applications in the study of renewable energy systems. Researchers, practitioners, undergraduate and graduate students engaged in the study of renewable energy systems will find this book very useful.




Soft Computing Applications for Renewable Energy and Energy Efficiency


Book Description

As the climate and environment continue to fluctuate, researchers are urgently looking for new ways to preserve our limited resources and prevent further environmental degradation. The answer can be found through computer science, a field that is evolving at precisely the time it is needed most. Soft Computing Applications for Renewable Energy and Energy Efficiency brings together the latest technological research in computational intelligence and fuzzy logic as a way to care for our environment. This reference work highlights current advances and future trends in environmental sustainability using the principles of soft computing, making it an essential resource for students, researchers, engineers, and practitioners in the fields of project engineering and energy science.




Intelligent Renewable Energy Systems


Book Description

INTELLIGENT RENEWABLE ENERGY SYSTEMS This collection of papers on artificial intelligence and other methods for improving renewable energy systems, written by industry experts, is a reflection of the state of the art, a must-have for engineers, maintenance personnel, students, and anyone else wanting to stay abreast with current energy systems concepts and technology. Renewable energy is one of the most important subjects being studied, researched, and advanced in today’s world. From a macro level, like the stabilization of the entire world’s economy, to the micro level, like how you are going to heat or cool your home tonight, energy, specifically renewable energy, is on the forefront of the discussion. This book illustrates modelling, simulation, design and control of renewable energy systems employed with recent artificial intelligence (AI) and optimization techniques for performance enhancement. Current renewable energy sources have less power conversion efficiency because of its intermittent and fluctuating behavior. Therefore, in this regard, the recent AI and optimization techniques are able to deal with data ambiguity, noise, imprecision, and nonlinear behavior of renewable energy sources more efficiently compared to classical soft computing techniques. This book provides an extensive analysis of recent state of the art AI and optimization techniques applied to green energy systems. Subsequently, researchers, industry persons, undergraduate and graduate students involved in green energy will greatly benefit from this comprehensive volume, a must-have for any library. Audience Engineers, scientists, managers, researchers, students, and other professionals working in the field of renewable energy.




Artificial Intelligence for Renewable Energy Systems


Book Description

ARTIFICIAL INTELLIGENCE FOR RENEWABLE ENERGY SYSTEMS Renewable energy systems, including solar, wind, biodiesel, hybrid energy, and other relevant types, have numerous advantages compared to their conventional counterparts. This book presents the application of machine learning and deep learning techniques for renewable energy system modeling, forecasting, and optimization for efficient system design. Due to the importance of renewable energy in today’s world, this book was designed to enhance the reader’s knowledge based on current developments in the field. For instance, the extraction and selection of machine learning algorithms for renewable energy systems, forecasting of wind and solar radiation are featured in the book. Also highlighted are intelligent data, renewable energy informatics systems based on supervisory control and data acquisition (SCADA); and intelligent condition monitoring of solar and wind energy systems. Moreover, an AI-based system for real-time decision-making for renewable energy systems is presented; and also demonstrated is the prediction of energy consumption in green buildings using machine learning. The chapter authors also provide both experimental and real datasets with great potential in the renewable energy sector, which apply machine learning (ML) and deep learning (DL) algorithms that will be helpful for economic and environmental forecasting of the renewable energy business. Audience The primary target audience includes research scholars, industry engineers, and graduate students working in renewable energy, electrical engineering, machine learning, information & communication technology.




Proceedings of the International Conference on Soft Computing Systems


Book Description

The book is a collection of high-quality peer-reviewed research papers presented in International Conference on Soft Computing Systems (ICSCS 2015) held at Noorul Islam Centre for Higher Education, Chennai, India. These research papers provide the latest developments in the emerging areas of Soft Computing in Engineering and Technology. The book is organized in two volumes and discusses a wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.




Applications of Image Processing and Soft Computing Systems in Agriculture


Book Description

The variety and abundance of qualitative characteristics of agricultural products have been the main reasons for the development of different types of non-destructive methods (NDTs). Quality control of these products is one of the most important tasks in manufacturing processes. The use of control and automation has become more widespread, and new approaches provide opportunities for production competition through new technologies. Applications of Image Processing and Soft Computing Systems in Agriculture examines applications of artificial intelligence in agriculture and the main uses of shape analysis on agricultural products such as relationships between form and genetics, adaptation, product characteristics, and product sorting. Additionally, it provides insights developed through computer vision techniques. Highlighting such topics as deep learning, agribusiness, and augmented reality, it is designed for academicians, researchers, agricultural practitioners, and industry professionals.




Soft Computing Systems


Book Description

This book (CCIS 837) constitutes the refereed proceedings of the Second International Conference on Soft Computing Systems, ICSCS 2018, held in Sasthamcotta, India, in April 2018. The 87 full papers were carefully reviewed and selected from 439 submissions. The papers are organized in topical sections on soft computing, evolutionary algorithms, image processing, deep learning, artificial intelligence, big data analytics, data minimg, machine learning, VLSI, cloud computing, network communication, power electronics, green energy.




Renewable Energy Systems


Book Description

Renewable Energy Systems: Modelling, Optimization and Control aims to cross-pollinate recent advances in the study of renewable energy control systems by bringing together diverse scientific breakthroughs on the modeling, control and optimization of renewable energy systems by leading researchers. The book brings together the most comprehensive collection of modeling, control theorems and optimization techniques to help solve many scientific issues for researchers in renewable energy and control engineering. Many multidisciplinary applications are discussed, including new fundamentals, modeling, analysis, design, realization and experimental results. The book also covers new circuits and systems to help researchers solve many nonlinear problems. This book fills the gaps between different interdisciplinary applications, ranging from mathematical concepts, modeling, and analysis, up to the realization and experimental work. - Covers modeling, control theorems and optimization techniques which will solve many scientific issues for researchers in renewable energy - Discusses many multidisciplinary applications with new fundamentals, modeling, analysis, design, realization and experimental results - Includes new circuits and systems, helping researchers solve many nonlinear problems




Handbook of Research on Novel Soft Computing Intelligent Algorithms


Book Description

"This book explores emerging technologies and best practices designed to effectively address concerns inherent in properly optimizing advanced systems, demonstrating applications in areas such as bio-engineering, space exploration, industrial informatics, information security, and nuclear and renewable energies"--Provided by publisher.