Proceedings of International Joint Conference on Computational Intelligence


Book Description

This book gathers outstanding research papers presented at the International Joint Conference on Computational Intelligence (IJCCI 2018), which was held at Daffodil International University on 14–15 December 2018. The topics covered include: collective intelligence, soft computing, optimization, cloud computing, machine learning, intelligent software, robotics, data science, data security, big data analytics, and signal and natural language processing.




Artificial Intelligence in the Age of Neural Networks and Brain Computing


Book Description

Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks




Proceedings of International Joint Conference on Computational Intelligence


Book Description

This book gathers outstanding research papers presented at the International Joint Conference on Computational Intelligence (IJCCI 2019), held at the University of Liberal Arts Bangladesh (ULAB), Dhaka, on 25–26 October 2019 and jointly organized by the University of Liberal Arts Bangladesh (ULAB), Bangladesh; Jahangirnagar University (JU), Bangladesh; and South Asian University (SAU), India. These proceedings present novel contributions in the areas of computational intelligence, and offer valuable reference material for advanced research. The topics covered include collective intelligence, soft computing, optimization, cloud computing, machine learning, intelligent software, robotics, data science, data security, big data analytics, and signal and natural language processing.




IJCNN 2000


Book Description




Proceedings of the Winter, 1990, International Joint Conference on Neural Networks


Book Description

This two volume set provides the complete proceedings of the 1990 International Joint Conference on Neural Networks held in Washington, D.C. Complete with subject, author, and title indices, it provides an invaluable reference to the current state-of-the-art in neural networks. Included in this volume are the latest research results, applications, and products from over 2,000 researchers and application developers from around the world. Ideal as a reference for researchers and practitioners of neuroscience, the two volumes are divided into eight sections: * Neural and Cognitive Sciences * Pattern Recognition and Analysis of Network Dynamics * Learning Theory * Plenary Lecture by Bernard Widrow * Special Lectures on Self-Organizing Neural Architectures * Application Systems and Network Implementations * Robotics, Speech, Signal Processing, and Vision * Expert Systems and Other Real-World Applications




Conference Proceedings of 2021 International Joint Conference on Energy, Electrical and Power Engineering


Book Description

This book will be a collection of the papers presented in the 2021 International Joint Conference on Energy, Electrical and Power Engineering (CoEEPE’21) , covering new and renewable energy, electrical and power engineering. It is expected to report the latest technological developments in the fields developed by academic researchers and industrial practitioners, with a focus on component design, optimization and control algorithms in electrical and power engineering systems. The applications and dissemination of these technologies will benefit research society as new research directions are getting more and more inter-disciplinary which require researchers from different research areas to come together and form ideas jointly. It will also benefit the electrical engineering and power industry as we are now experiencing a new wave of industrial revelation, that is, electrification, intelligentization and digitalisation of our transport, manufacturing process and way of thinking.










Transfer Learning


Book Description

Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. For example, a pre-trained model that takes account of user privacy can be downloaded and adapted at the edge of a computer network. This self-contained, comprehensive reference text describes the standard algorithms and demonstrates how these are used in different transfer learning paradigms. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers.