Intersubband Infrared Photodetectors


Book Description

Infrared technologies are very important for a wide range of military, scientific and commercial applications. Devices and systems based on semiconductor heterostructure and quantum well and quantum dot structures open up a new era in infrared technologies.This book deals with various topics related to the latest achievements in the development of intersubband infrared photodetectors, reviewed by top experts in the field. It covers physical aspects of the operation of the devices as well as details of their design in different applications. The papers included in the book will be useful for researchers and engineers interested in the physics of optoelectronic devices as well as their practical design and applications.




Intersubband Infrared Photodetectors


Book Description

Infrared technologies are very important for a wide range of military, scientific and commercial applications. Devices and systems based on semiconductor heterostructure and quantum well and quantum dot structures open up a new era in infrared technologies.This book deals with various topics related to the latest achievements in the development of intersubband infrared photodetectors, reviewed by top experts in the field. It covers physical aspects of the operation of the devices as well as details of their design in different applications. The papers included in the book will be useful for researchers and engineers interested in the physics of optoelectronic devices as well as their practical design and applications.




Quantum Well Infrared Photodetectors


Book Description

Addressed to both students as a learning text and scientists/engineers as a reference, this book discusses the physics and applications of quantum-well infrared photodetectors (QWIPs). It is assumed that the reader has a basic background in quantum mechanics, solid-state physics, and semiconductor devices. To make this book as widely accessible as possible, the treatment and presentation of the materials is simple and straightforward. The topics for the book were chosen by the following criteria: they must be well-established and understood; and they should have been, or potentially will be, used in practical applications. The monograph discusses most aspects relevant for the field but omits, at the same time, detailed discussions of specialized topics such as the valence-band quantum wells.




The Physics Of Quantum Well Infrared Photodetectors


Book Description

In the past, infrared imaging has been used exclusively for military applications. In fact, it can also be useful in a wide range of scientific and commercial applications. However, its wide spread use was impeded by the scarcity of the imaging systems and its high cost. Recently, there is an emerging infrared technology based on quantum well intersubband transition in III-V compound semiconductors. With the new technology, these impedances can be eliminated and a new era of infrared imaging is in sight. This book is designed to give a systematic description on the underlying physics of the new detectors and other issues related to infrared imaging.







Quantum Well Intersubband Transition Physics and Devices


Book Description

Intersubband transitions in quantum wells have attracted tremendous attention in recent years, mainly due to the promise of applications in the mid and far-infrared regions (2--20 mum). Many of the papers presented in Quantum Well Intersubband Transition Physics and Devices are on the basic linear intersubband transition processes, detector physics and detector application, reflecting the current state of understanding and detector applications, where highly uniform, large focal plane arrays have been demonstrated. Other areas are still in their early stages, including infrared modulation, harmonic generation and emission.




Infrared Detectors


Book Description

Completely revised and reorganized while retaining the approachable style of the first edition, Infrared Detectors, Second Edition addresses the latest developments in the science and technology of infrared (IR) detection. Antoni Rogalski, an internationally recognized pioneer in the field, covers the comprehensive range of subjects necessary to un




Intersubband Transitions In Quantum Structures


Book Description

Advances in epitaxial growth and nanofabrication technology in the past several years have made it possible to engineer sophisticated semiconductor quantum devices with unprecedented control of their electronic and optical properties. A particularly important class of such devices is based on intersubband transitions, i.e. optical transitions between quantized electronic states in semiconductor heterostructures. Most notably, mid-infrared quantum-well infrared photodetectors (QWIPs) and quantum cascade lasers nowadays offer superior performance for applications such as thermal imaging, spectroscopy, and biochemical sensing, and have recently become commercially available. Intersubband devices also have the potential for a revolutionary impact in the fields of silicon photonics, terahertz sensing, and ultra-high-bandwidth fiber-optic communications, and extensive research is ongoing to fulfill this promise. Joined by an international group of world experts, Paiella describes the basic device physics and applications of intersubband transitions, as well as the more recent and important developments in this exciting area of semiconductor nanotechnology.




Intersubband Transitions in Quantum Wells


Book Description

This book contains the lectures delivered at the NATO Advanced Research Workshop on the "Intersubband Transistions in Quantum Wells" held in Cargese, France, between the t 9 h and the 14th of September 1991. The urge for this Workshop was justified by the impressive growth of work dealing with this subject during the last two or three years. Indeed, thanks to recent progresses of epitaxial growth techniques, such as Molecular Beam Epitaxy, it is now possible to realize semiconductor layers ( e.g. GaAs) with thicknesses controlled within one atomic layer, sandwiched between insulating layers (e.g. AlGaAs). When the semiconducting layer is very thin, i.e. less than 15 nm, the energy of the carriers corresponding to their motion perpendicular to these layers is quantized, forming subbands of allowed energies. Because of the low effective masses in these semiconducting materials, the oscillator strengths corresponding to intersubband transitions are extremely large and quantum optical effects become giant in the 5 - 20 ~ range: photoionization, optical nonlinearities, ... Moreover, a great theoretical surprise is that - thanks to the robustness of the effective mass theory - these quantum wells are a real life materialization of our old text book one-dimensional quantum well ideal. Complex physical phenomena may then be investigated on a simple model system.




Infrared and Terahertz Detectors, Third Edition


Book Description

This new edition of Infrared and Terahertz Detectors provides a comprehensive overview of infrared and terahertz detector technology, from fundamental science to materials and fabrication techniques. It contains a complete overhaul of the contents including several new chapters and a new section on terahertz detectors and systems. It includes a new tutorial introduction to technical aspects that are fundamental for basic understanding. The other dedicated sections focus on thermal detectors, photon detectors, and focal plane arrays.