Intracellular Delivery II


Book Description

This volume is a continuation of Volume 1 following the previously published Editorial. More emphasis is given to novel nanocarrier designs, their characterization and function, and applications for drug discovery and treatment. A number of chapters will deal with nanofibers as a new major application within the biomedical field with a very high success rate particularly in wound healing and diabetic foot and spine injuries. A major new subdivision will deal with mathematical methods for the assembly of nanocarriers both for simulation and function.




Intracellular Delivery


Book Description

This book features a special subsection of Nanomedicine, an application of nanotechnology to achieve breakthroughs in healthcare. It exploits the improved and often novel physical, chemical and biological properties of materials only existent at the nanometer scale. As a consequence of small scale, nanosystems in most cases are efficiently uptaken by cells and appear to act at the intracellular level. Nanotechnology has the potential to improve diagnosis, treatment and follow-up of diseases, and includes targeted drug delivery and regenerative medicine; it creates new tools and methods that impact significantly upon existing conservative practices. This volume is a collection of authoritative reviews. In the introductory section we define the field (intracellular delivery). Then, the fundamental routes of nanodelivery devices, cellular uptake, types of delivery devices, particularly in terms of localized cellular delivery, both for small drug molecules, macromolecular drugs and genes; at the academic and applied levels, are covered. The following section is dedicated to enhancing delivery via special targeting motifs followed by the introduction of different types of intracellular nanodelivery devices (e.g. a brief description of their chemistry) and ways of producing these different devices. Finally, we put special emphasis on particular disease states and on other biomedical applications, whilst diagnostic and sensing issues are also included. Intracellular delivery / therapy is a highly topical which will stir great interest. Intracellular delivery enables much more efficient drug delivery since the impact (on different organelles and sites) is intracellular as the drug is not supplied externally within the blood stream. There is great potential for targeted delivery with improved localized delivery and efficacy.




Intracellular Pathogens II


Book Description

A current review of basic research on Rickettsiales biology and pathogenesis in one comprehensive volume. • Details the scientific knowledge about how these obligate intracellular bacteria invade, survive and replicate inside eukaryotic cells. • Describes the spectrum of disease caused by an infection and the role of vectors in transmission. • Discusses protective and pathologic immune responses and establishment of persistent infection. • Describes the latest developments including genomics and progress in vaccine development. • Serves as a significant research book for scientists, physicians, medical students, public health professionals, epidemiologists, biocomputational scientists and government policy makers.




Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis


Book Description

This book elaborates on drug delivery targeting via intracellular delivery, specifically through the Receptor Mediated Endocytosis (RME) approach, due to the involvement of cellular receptors in various grave diseases. Targeted delivery relies on two basic approaches, passive and active targeting. While passive targeting approaches have shown great promise, the improved selectivity achieved with active targeting approaches has resulted in significantly higher efficacy. Interestingly there are numerous strategies for active targeting, many of which are already highlighted in , Targeted Drug Delivery: Concepts and Applications. Nevertheless an exciting and practical strategy for active targeting, which could enable high intracellular delivery, is through exploitation of RME. Cells in the body express receptors to enable various physiological and biochemical processes. As a result, many of these receptors are overexpressed in pathological conditions, or newer receptors expressed due to defective cellular functioning. RME is based on exploitation of such receptors to achieve intracellular delivery. While targeted delivery can have manifold applications, in this book we focus on two major and challenging therapeutic areas; i) Cancer and ii) Infectious Diseases. Targeted Intracellular Drug Delivery by Receptor Medicated Endocytosis discusses the major receptors that are useful for targeted delivery for these afflictions. A major section of this book is dedicated to details regarding their occurrence and location, the recognition domain of the receptor, structure activity relationship of substrate /ligand for selective binding, ligands explored, antagonists for ligand binding and relevance of these aspects for therapy of cancer and infectious diseases. These facets are elucidated with the help of specific examples from academic research and also emphasize commercial products, wherever relevant. In vitro cellular models relied on for assessing receptor mediated cellular targeting and in vivo models depicting clinical efficacy are focused on in a separate section. Finally, we briefly discuss the regulatory and toxicity issues that may be associated specifically with the RME approach of intracellular drug delivery.




Therapeutic Oligonucleotides


Book Description

This book provides a compelling overall update on current status of RNA interference




Drug Delivery


Book Description

Following its successful predecessor, this book covers the fundamentals, delivery routes and vehicles, and practical applications of drug delivery. In the 2nd edition, almost all chapters from the previous are retained and updated and several new chapters added to make a more complete resource and reference. • Helps readers understand progress in drug delivery research and applications • Updates and expands coverage to reflect advances in materials for delivery vehicles, drug delivery approaches, and therapeutics • Covers recent developments including transdermal and mucosal delivery, lymphatic system delivery, theranostics • Adds new chapters on nanoparticles, controlled drug release systems, theranostics, protein and peptide drugs, and biologics delivery




Handbook of Cell-Penetrating Peptides


Book Description

Since the first Handbook of Cell-Penetrating Peptides was prepared in 2001, the wealth of new information on the use of these peptides as transport systems has in fact served to confound the field. The constant internal change in the field of cell-penetrating peptides (CPPs) is due to recent research uncovering apparent ambiguities in cellular upta




Comprehensive Supramolecular Chemistry II


Book Description

Comprehensive Supramolecular Chemistry II, Second Edition, Nine Volume Set is a ‘one-stop shop’ that covers supramolecular chemistry, a field that originated from the work of researchers in organic, inorganic and physical chemistry, with some biological influence. The original edition was structured to reflect, in part, the origin of the field. However, in the past two decades, the field has changed a great deal as reflected in this new work that covers the general principles of supramolecular chemistry and molecular recognition, experimental and computational methods in supramolecular chemistry, supramolecular receptors, dynamic supramolecular chemistry, supramolecular engineering, crystallographic (engineered) assemblies, sensors, imaging agents, devices and the latest in nanotechnology. Each section begins with an introduction by an expert in the field, who offers an initial perspective on the development of the field. Each article begins with outlining basic concepts before moving on to more advanced material. Contains content that begins with the basics before moving on to more complex concepts, making it suitable for advanced undergraduates as well as academic researchers Focuses on application of the theory in practice, with particular focus on areas that have gained increasing importance in the 21st century, including nanomedicine, nanotechnology and medicinal chemistry Fully rewritten to make a completely up-to-date reference work that covers all the major advances that have taken place since the First Edition published in 1996




Intracellular Delivery III


Book Description

A critical review is attempted to assess the status of nanomedicine entry onto the market. The emergence of new potential therapeutic entities such as DNA and RNA fragments requires that these new “drugs” will need to be delivered in a cell-and organelle-specific manner. Although efforts have been made over the last 50 years or so to develop such delivery technology, no effective and above all clinically approved protocol for cell-specific drug delivery in humans exists as yet. Various particles, macromolecules, liposomes and most recently “nanomaterials” have been said to “show promise” but none of these promises have so far been “reduced” to human clinical practice. The focus of this volume is on cancer indication since the majority of published research relates to this application; within that, we focus on solid tumors (solid malignancies). Our aim is critically to evaluate whether nanomaterials, both non-targeted and targeted to specific cells, could be of therapeutic benefit in clinical practice. The emphasis of this volume will be on pharmacokinetics (PK) and pharmacodynamics (PD) in animal and human studies. Apart from the case of exquisitely specific antibody-based drugs, the development of target-specific drug–carrier delivery systems has not yet been broadly successful at the clinical level. It can be argued that drugs generated using the conventional means of drug development (i.e., relying on facile biodistribution and activity after (preferably) oral administration) are not suitable for a target-specific delivery and would not benefit from such delivery even when a seemingly perfect delivery system is available. Therefore, successful development of site-selective drug delivery systems will need to include not only the development of suitable carriers, but also the development of drug entities that meet the required PK/PD profile.




Nanocellulose and Nanohydrogel Matrices


Book Description

This first book on nanocellulose and nanohydrogels for biomedical applications is unique in discussing recent advancements in the field, resulting in a comprehensive, well-structured overview of nanocellulose and nanohydrogel materials based nanocomposites. The book covers different types of nanocellulose materials and their recent developments in the drug delivery and nanomedicine sector, along with synthesis, characterization, as well as applications in the biotechnological and biomedical fields. The book also covers the current status and future perspectives of bacterial cellulose and polyester hydrogel matrices, their preparation, characterization, and tissue engineering applications of water soluble hydrogel matrices obtained from biodegradable sources. In addition, the chitosan-based hydrogel and nanogel matrices, their involvement in the current biofabrication technologies, and influencing factors towards the biomedical sector of biosensors, biopharmaceuticals, tissue engineering appliances, implant materials, diagnostic probes and surgical aids are very well documented. Further, the history of cellulose-based and conducting polymer-based nanohydrogels, their classification, synthesis methods and applicability to different sectors, the challenges associated with their use, recent advances on the inhibitors of apoptosis proteins are also included. The recent developments and applications in the drug delivery sector gives an overview of facts about the nanofibrillated cellulose and copoly(amino acid) hydrogel matrices in the biotechnology and biomedicine field. This book serves as an essential reference for researchers and academics in chemistry, pharmacy, microbiology, materials science and biomedical engineering.