Intracellular Delivery III


Book Description

A critical review is attempted to assess the status of nanomedicine entry onto the market. The emergence of new potential therapeutic entities such as DNA and RNA fragments requires that these new “drugs” will need to be delivered in a cell-and organelle-specific manner. Although efforts have been made over the last 50 years or so to develop such delivery technology, no effective and above all clinically approved protocol for cell-specific drug delivery in humans exists as yet. Various particles, macromolecules, liposomes and most recently “nanomaterials” have been said to “show promise” but none of these promises have so far been “reduced” to human clinical practice. The focus of this volume is on cancer indication since the majority of published research relates to this application; within that, we focus on solid tumors (solid malignancies). Our aim is critically to evaluate whether nanomaterials, both non-targeted and targeted to specific cells, could be of therapeutic benefit in clinical practice. The emphasis of this volume will be on pharmacokinetics (PK) and pharmacodynamics (PD) in animal and human studies. Apart from the case of exquisitely specific antibody-based drugs, the development of target-specific drug–carrier delivery systems has not yet been broadly successful at the clinical level. It can be argued that drugs generated using the conventional means of drug development (i.e., relying on facile biodistribution and activity after (preferably) oral administration) are not suitable for a target-specific delivery and would not benefit from such delivery even when a seemingly perfect delivery system is available. Therefore, successful development of site-selective drug delivery systems will need to include not only the development of suitable carriers, but also the development of drug entities that meet the required PK/PD profile.




Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis


Book Description

This book elaborates on drug delivery targeting via intracellular delivery, specifically through the Receptor Mediated Endocytosis (RME) approach, due to the involvement of cellular receptors in various grave diseases. Targeted delivery relies on two basic approaches, passive and active targeting. While passive targeting approaches have shown great promise, the improved selectivity achieved with active targeting approaches has resulted in significantly higher efficacy. Interestingly there are numerous strategies for active targeting, many of which are already highlighted in , Targeted Drug Delivery: Concepts and Applications. Nevertheless an exciting and practical strategy for active targeting, which could enable high intracellular delivery, is through exploitation of RME. Cells in the body express receptors to enable various physiological and biochemical processes. As a result, many of these receptors are overexpressed in pathological conditions, or newer receptors expressed due to defective cellular functioning. RME is based on exploitation of such receptors to achieve intracellular delivery. While targeted delivery can have manifold applications, in this book we focus on two major and challenging therapeutic areas; i) Cancer and ii) Infectious Diseases. Targeted Intracellular Drug Delivery by Receptor Medicated Endocytosis discusses the major receptors that are useful for targeted delivery for these afflictions. A major section of this book is dedicated to details regarding their occurrence and location, the recognition domain of the receptor, structure activity relationship of substrate /ligand for selective binding, ligands explored, antagonists for ligand binding and relevance of these aspects for therapy of cancer and infectious diseases. These facets are elucidated with the help of specific examples from academic research and also emphasize commercial products, wherever relevant. In vitro cellular models relied on for assessing receptor mediated cellular targeting and in vivo models depicting clinical efficacy are focused on in a separate section. Finally, we briefly discuss the regulatory and toxicity issues that may be associated specifically with the RME approach of intracellular drug delivery.




Intracellular Delivery


Book Description

This book features a special subsection of Nanomedicine, an application of nanotechnology to achieve breakthroughs in healthcare. It exploits the improved and often novel physical, chemical and biological properties of materials only existent at the nanometer scale. As a consequence of small scale, nanosystems in most cases are efficiently uptaken by cells and appear to act at the intracellular level. Nanotechnology has the potential to improve diagnosis, treatment and follow-up of diseases, and includes targeted drug delivery and regenerative medicine; it creates new tools and methods that impact significantly upon existing conservative practices. This volume is a collection of authoritative reviews. In the introductory section we define the field (intracellular delivery). Then, the fundamental routes of nanodelivery devices, cellular uptake, types of delivery devices, particularly in terms of localized cellular delivery, both for small drug molecules, macromolecular drugs and genes; at the academic and applied levels, are covered. The following section is dedicated to enhancing delivery via special targeting motifs followed by the introduction of different types of intracellular nanodelivery devices (e.g. a brief description of their chemistry) and ways of producing these different devices. Finally, we put special emphasis on particular disease states and on other biomedical applications, whilst diagnostic and sensing issues are also included. Intracellular delivery / therapy is a highly topical which will stir great interest. Intracellular delivery enables much more efficient drug delivery since the impact (on different organelles and sites) is intracellular as the drug is not supplied externally within the blood stream. There is great potential for targeted delivery with improved localized delivery and efficacy.




Intracellular Delivery II


Book Description

This volume is a continuation of Volume 1 following the previously published Editorial. More emphasis is given to novel nanocarrier designs, their characterization and function, and applications for drug discovery and treatment. A number of chapters will deal with nanofibers as a new major application within the biomedical field with a very high success rate particularly in wound healing and diabetic foot and spine injuries. A major new subdivision will deal with mathematical methods for the assembly of nanocarriers both for simulation and function.




Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids


Book Description

Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids addresses several issues related to safe and effective delivery of nucleic acids (NAs) using nanoparticles. A further emphasis would be laid on the mechanism of delivery of NAs, the barriers encountered and the strategies adapted to combat them. An exhaustive account of the advantages as well shortcomings of all the delivery vectors being employed in delivery of various NAs will be provided. On final note the regulatory aspects of nanoparticles mediated NA would be discussed, with focus on their clinical relevance. The design and development of nucleic acid-based therapeutics for the treatment of diseases arising from genetic abnormalities has made significant progress over the past few years. NAs have been widely explored for the treatment of cancer and infectious diseases or to block cell proliferation and thereby caused diseases. Advances in synthetic oligonucleotide chemistry resulted in synthesis of NAs that are relatively stable in in vivo environments. However, cellular targeting and intracellular delivery of NAs still remains a challenge. Further development of NA-based therapeutics depends on the progress of safe and effective carriers for systemic administration. Nanomedicine has facilitated availability of vectors with diminished cytotoxicity and enhanced efficacy which are rapidly emerging as systems of choice. These vectors protect NAs from enzymatic degradation by forming condensed complexes along with targeted tissue and cellular delivery. During the past few years, a myriad reports have appeared reporting delivery of NAs mediated by nanoparticles. This book will provide an overview of nanoparticles being employed in the in vitro and in vivo delivery of therapeutically relevant NAs like DNA, siRNA, LNA, PNA, etc. - Provides a complete overview of the applicatiosn of nanomedicine in the delivery of nucleic acids, from characterization of nanoparticles, to in vitro and in vivo studies - Discusses delivery issues of less well explored nucleic acids, like PNAs, Ribozymes, DNAzymes, etc. - Summarizes the current state of research in nucleic acid delivery and underscores the future of nanomedicine in this field




Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices


Book Description

Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices covers the modern micro and nanotechnologies used for diagnosis, drug delivery, and theranostics using micro, nano, and implantable systems. In-depth coverage of all aspects of disease treatment is included. In addition, the book covers cutting-edge research and technology that will help readers gain knowledge of novel approaches and their applications to improve drug/agent specificity for diagnosis and efficient disease treatment. It is a comprehensive guide for medical specialists, the pharmaceutical-industry, and academic researchers discussing the impact of nanotechnology on diagnosis, drug delivery, and theranostics. - Gives readers working in immunology, drug delivery, and medicine a greater awareness on how novel nanotechnology orientated methods can help improve treatment - Provides readers with backgrounds in nanotechnology, chemistry, and materials science an understanding on how nanotechnology is used in immunology and drug delivery - Includes focused coverage of the use of nanodevices in diagnostics, therapeutics, and theranostics not offered by other books




Intracellular Pathogens II


Book Description

A current review of basic research on Rickettsiales biology and pathogenesis in one comprehensive volume. • Details the scientific knowledge about how these obligate intracellular bacteria invade, survive and replicate inside eukaryotic cells. • Describes the spectrum of disease caused by an infection and the role of vectors in transmission. • Discusses protective and pathologic immune responses and establishment of persistent infection. • Describes the latest developments including genomics and progress in vaccine development. • Serves as a significant research book for scientists, physicians, medical students, public health professionals, epidemiologists, biocomputational scientists and government policy makers.




Nanoengineered Biomaterials for Advanced Drug Delivery


Book Description

Nanoengineered Biomaterials for Advanced Drug Delivery explores the latest advances in the applications of nanoengineered biomaterials in drug delivery systems. The book covers a wide range of biomaterials and nanotechnology techniques that have been used for the delivery of different biological molecules and drugs in the human body. It is an important resource for biomaterials scientists and engineers working in biomedicine and those wanting to learn more on how nanoengineered biomaterials are being used to enhance drug delivery for a variety of diseases. Nanoengineered biomaterials have enhanced properties that make them more effective than conventional biomaterials as both drug delivery agents, and in the creation of new drug delivery systems. As nanoengineering becomes more cost-effective, nanoengineered biomaterials have become more widely used within biomedicine. - Offers an informed overview on how nanoengineering biomaterials enhance their properties for drug delivery applications - Discusses the major applications of nanoengineered biomaterials for drug delivery - Outlines the major challenges for successfully implementing nanoengineered biomaterials into existing drug delivery systems




Drug Delivery


Book Description

Following its successful predecessor, this book covers the fundamentals, delivery routes and vehicles, and practical applications of drug delivery. In the 2nd edition, almost all chapters from the previous are retained and updated and several new chapters added to make a more complete resource and reference. • Helps readers understand progress in drug delivery research and applications • Updates and expands coverage to reflect advances in materials for delivery vehicles, drug delivery approaches, and therapeutics • Covers recent developments including transdermal and mucosal delivery, lymphatic system delivery, theranostics • Adds new chapters on nanoparticles, controlled drug release systems, theranostics, protein and peptide drugs, and biologics delivery




Immune Rebalancing


Book Description

Immune Rebalancing: The Future of Immunosuppression summarizes the most promising perspectives of immunopharmacology, in particular in the area of immunosuppression by considering molecular pathways, personalized medicine, microbiome and nanomedicine. Modulation of immune responses for therapeutic purposes is a particularly relevant area, given the central role of anomalous immunity in diseases. These diseases vary from the most typically immune-related syndromes (autoimmune diseases, allergy and asthma, immunodeficiencies) to those in which altered immunity and inflammation define the pathological outcomes (chronic infections, tumours, chronic inflammatory and degenerative diseases, metabolic disorders, etc. - Visits immunosuppression from a modern point of view of signalling mechanisms at the light of the current knowledge of signalling mechanisms and regulatory networks allows the reader to formulate new ideas and concepts on how to use immunosuppression the therapeutic purposes - Encourages researchers to engage into exploring the field of pharmacological modulation of immune responses in depth, and with the new knowledge and tools available, designs more effective therapeutic strategies to autoimmune and inflammatory diseases, cancer, degenerative diseases and infections - Examines the link between molecular pathways associated to immune-suppression and the new immunopharmacology approaches - Provides information on the new strategies for drug development in this field - Considers the role of microbes in the development of the mammalian immune system and immune responses, which will widen the reader's strategy for addressing therapeutic immune modulations