Introducing Engineering in K-8 Settings


Book Description

Introducing Engineering to K-8 Students will provide you with the tools you need to incorporate engineering design into your classroom. Rather than prescribing a specific curriculum to follow, this book will help you engage your students with hands-on, open-ended engineering design problems that can be easily integrated into your existing classroom setup. Beginning with the basics of K-8 engineering, and advancing to topics such as integrating engineering with other disciplines, documentation, and assessments, the chapters provide a how-to on creating open-ended engineering activities, design tasks, and projects that are reflective of the academic, social, emotional, developmental, and community goals of your students. An additional focus is on ways to adapt these pedagogical approaches to meet the needs of all students, representative of racially, ethnically, socioeconomically, and gender diverse populations and students who receive special education services. Case studies and practical implementation strategies are presented alongside more than fifteen lesson plans, with tips on how to modify the tasks presented in the book to work with your classroom and students. This user-centered approach will also help you create your own engineering lessons that meet your individual classroom objectives and interests, and be able to recognize and classify your students’ engineering behaviors to support them in enacting their ideas. No matter your experience or comfort level, this book will be an invaluable resource for elementary and middle school science and technology teachers at all career stages who are looking to introduce engineering design to their students. Additional classroom resources can be found online at introducingengineering.org.




Engineering in Pre-college Settings


Book Description

In science, technology, engineering, and mathematics (STEM) education in pre-college, engineering is not the silent "e" anymore. There is an accelerated interest in teaching engineering in all grade levels. Structured engineering programs are emerging in schools as well as in out-of-school settings. Over the last ten years, the number of states in the US including engineering in their K-12 standards has tripled, and this trend will continue to grow with the adoption of the Next Generation Science Standards. The interest in pre-college engineering education stems from three different motivations. First, from a workforce pipeline or pathway perspective, researchers and practitioners are interested in understanding precursors, influential and motivational factors, and the progression of engineering thinking. Second, from a general societal perspective, technological literacy and understanding of the role of engineering and technology is becoming increasingly important for the general populace, and it is more imperative to foster this understanding from a younger age. Third, from a STEM integration and education perspective, engineering processes are used as a context to teach science and math concepts. This book addresses each of these motivations and the diverse means used to engage with them.Designed to be a source of background and inspiration for researchers and practitioners alike, this volume includes contributions on policy, synthesis studies, and research studies to catalyze and inform current efforts to improve pre-college engineering education. The book explores teacher learning and practices, as well as how student learning occurs in both formal settings, such as classrooms, and informal settings, such as homes and museums. This volume also includes chapters on assessing design and creativity.




Engineering in K-12 Education


Book Description

Engineering education in K-12 classrooms is a small but growing phenomenon that may have implications for engineering and also for the other STEM subjects-science, technology, and mathematics. Specifically, engineering education may improve student learning and achievement in science and mathematics, increase awareness of engineering and the work of engineers, boost youth interest in pursuing engineering as a career, and increase the technological literacy of all students. The teaching of STEM subjects in U.S. schools must be improved in order to retain U.S. competitiveness in the global economy and to develop a workforce with the knowledge and skills to address technical and technological issues. Engineering in K-12 Education reviews the scope and impact of engineering education today and makes several recommendations to address curriculum, policy, and funding issues. The book also analyzes a number of K-12 engineering curricula in depth and discusses what is known from the cognitive sciences about how children learn engineering-related concepts and skills. Engineering in K-12 Education will serve as a reference for science, technology, engineering, and math educators, policy makers, employers, and others concerned about the development of the country's technical workforce. The book will also prove useful to educational researchers, cognitive scientists, advocates for greater public understanding of engineering, and those working to boost technological and scientific literacy.




Engineering Instruction for High-Ability Learners in K-8 Classrooms


Book Description

This education resource helps K-8 teachers design engineering curriculum and instruction for motivated students, integrate technology into engineering lessons, and engage high-ability learners in the practices of science and engineering while addressing content standards.




A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.




Novel Engineering, K-8


Book Description

"Picture your students designing a hearing aid for the main character in El Deafo-and then disguising it as a fashion accessory. Or imagine them helping the shipwrecked Swiss Family Robinson build a structure to keep them cool under the hot sun. Novel Engineering shows how your students can use anything from a picture book to a novel to a historical text as the basis for an engineering design challenge. This innovative resource will have your students pulling information from literature to identify a problem. Then, using details from the story, they'll apply the engineering design process to develop functional solutions for their "clients"-the book's characters. Novel Engineering provides you with plenty of practical guidance for integrating engineering and English language arts (ELA), including a thorough introduction to the concept and detailed implementation advice. But the book comes to life through five in-depth case studies featuring the use of novels, a biography, and a nonfiction historical text. In addition to demonstrating Novel Engineering projects in the classroom, the case studies let you practice thinking about what your own students' work could look like and how you would respond. You'll see that this approach doesn't require books outside your existing ELA or social studies curriculum or a specific building-materials kit. You'll also see that Novel Engineering can help you engage students in a powerful new way. As the authors write, "We have been encouraged by the excitement that students and teachers have shown for their work during Novel Engineering units. ... Students have taken ownership of their learning and are able to navigate the steps of the engineering design process, creating functional solutions to problems they have identified in texts.""--




STEM by Design


Book Description

The second edition of this practical, how-to guide from expert STEM teacher Anne Jolly reveals the secrets behind designing projects that involve students in using science, math, and technology to engineer solutions for real-world problems. Fully revised and updated from the first edition, each chapter is packed with tools and strategies to help you design and lead exciting STEM projects and lessons and help your students grow into creative thinkers, innovators, and collaborators prepared for life in the 21st century. You’ll learn how to: Select engaging and relevant STEM challenges. Design your own STEM projects using the engineering design process and other acknowledged STEM criteria. Convert existing lessons into quality STEM projects. Include students of different ethnicities and other underrepresented children. Build students’ abilities to work successfully in teams and practice important life skills. Integrate technology into your projects in authentic ways. Assess students’ understanding of STEM concepts and procedures, problem-solving progress, and level of engagement in the project. Involve students in assessing and adjusting their own progress throughout the project. Throughout this user-friendly book you’ll find design tools such as checklists, activities, and assessments to aid you in designing and adapting energizing STEM lessons with your students in Grades 4–8. These tools, as well as other teacher resources, are also available as free downloads from the book website, www.stem-by-design.com.




Handbook of Research on Educational Communications and Technology


Book Description

The 4th edition of the Handbook of Research on Educational Communications and Technology expands upon the previous 3 versions, providing a comprehensive update on research pertaining to new and emerging educational technologies. Chapters that are no longer pertinent have been eliminated in this edition, with most chapters being completely rewritten, expanded, and updated Additionally, new chapters pertaining to research methodologies in educational technology have been added due to expressed reader interest. Each chapter now contains an extensive literature review, documenting and explaining the most recent, outstanding research, including major findings and methodologies employed. The Handbook authors continue to be international leaders in their respective fields; the list is cross disciplinary by design and great effort was taken to invite authors outside of the traditional instructional design and technology community.




Standards for K-12 Engineering Education?


Book Description

The goal of this study was to assess the value and feasibility of developing and implementing content standards for engineering education at the K-12 level. Content standards have been developed for three disciplines in STEM education-science, technology, and mathematic-but not for engineering. To date, a small but growing number of K-12 students are being exposed to engineering-related materials, and limited but intriguing evidence suggests that engineering education can stimulate interest and improve learning in mathematics and science as well as improve understanding of engineering and technology. Given this background, a reasonable question is whether standards would improve the quality and increase the amount of teaching and learning of engineering in K-12 education. The book concludes that, although it is theoretically possible to develop standards for K-12 engineering education, it would be extremely difficult to ensure their usefulness and effective implementation. This conclusion is supported by the following findings: (1) there is relatively limited experience with K-12 engineering education in U.S. elementary and secondary schools, (2) there is not at present a critical mass of teachers qualified to deliver engineering instruction, (3) evidence regarding the impact of standards-based educational reforms on student learning in other subjects, such as mathematics and science, is inconclusive, and (4) there are significant barriers to introducing stand-alone standards for an entirely new content area in a curriculum already burdened with learning goals in more established domains of study.




Taking Science to School


Book Description

What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.