Introduction to Applied Thermodynamics


Book Description

Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus on temperature, entropy, and standard air cycles, along with gas compressors, combustion, psychrometry, and the thermodynamic properties of pure substances. Steam and steam engines, internal combustion engines, and refrigeration are also considered. The final chapter is devoted to heat transfer by conduction, radiation, and convection. The transfer of heat energy between fluids flowing through concentric pipes is described. This book will appeal to mechanical engineers and students as well as those interested in applied thermodynamics.




Applied Thermodynamics of Fluids


Book Description

Published under the asspices of both IUPAC and its affiliated body, the International Association of Chemical Thermodynamics (IACT), this book will serve as a guide to scientists or technicians who use equations of state for fluids. Concentrating on the application of theory, the practical use of each type of equation is discussed and the strengths and weaknesses of each are addressed. It includes material on the equations of state for chemically reacting and non-equilibrium fluids which have undergone significant developments and brings up to date the equations of state for fluids and fluid mixtures. Applied Thermodynamics of Fluids addresses the need of practitioners within academia, government and industry by assembling an international team of distinguished experts to provide each chapter. The topics presented in the book are important to the energy business, particularly the hydroncarbon economy and the development of new power sources and are also significant for the application of liquid crystals and ionic liquids to commericial products. This reference will be useful for post graduate researchers in the fields of chemical engineering, mechanical engineering, chemistry and physics.




Applied Thermodynamics


Book Description

About the Book: This book presents a systematic account of the concepts and principles of engineering thermodynamics and the concepts and practices of thermal engineering. The book covers basic course of engineering thermodynamics and also deals with the advanced course of thermal engineering. This book will meet the requirements of the undergraduate students of engineering and technology undertaking the compulsory course of engineering thermodynamics. The subject matter is sufficient for the students of Mechanical Engineering/Industrial-Production Engineering, Aeronautical Engineering, undertaking advanced courses in the name of thermal engineering/heat engineering/applied thermodynamics etc. Presentation of the subject matter has been made in very simple and understandable language. The book is written in SI system of units and each chapter has been provided with sufficient number of typical numerical problems of solved and unsolved questions with answers. Contents: Fundamental Concepts and Definitions Zeroth Law of Thermodynamics First Law of Thermodynamics Second Law of Thermodynamics Entropy Thermodynamic Properties of Pure Substance Availability and General Thermodynamic Relations Vapour Power Cycles Gas Power Cycles Fuel and Combustion Boilers and Boiler Calculations Steam Engine Nozzles Steam Turbines Steam Condenser Reciprocating and Rotary Compressor Introduction to Internal Combustion Engines Introduction to Refrigeration and Air Conditioning Jet Propulsion and Rocket Engines Multiple Answer type Questions




An Introduction to Applied Statistical Thermodynamics


Book Description

One of the goals of An Introduction to Applied Statistical Thermodynamics is to introduce readers to the fundamental ideas and engineering uses of statistical thermodynamics, and the equilibrium part of the statistical mechanics. This text emphasises on nano and bio technologies, molecular level descriptions and understandings offered by statistical mechanics. It provides an introduction to the simplest forms of Monte Carlo and molecular dynamics simulation (albeit only for simple spherical molecules) and user-friendly MATLAB programs for doing such simulations, and also some other calculations. The purpose of this text is to provide a readable introduction to statistical thermodynamics, show its utility and the way the results obtained lead to useful generalisations for practical application. The text also illustrates the difficulties that arise in the statistical thermodynamics of dense fluids as seen in the discussion of liquids.







Advanced Thermodynamics for Engineers


Book Description

Although the basic theories of thermodynamics are adequately covered by a number of existing texts, there is little literature that addresses more advanced topics. In this comprehensive work the author redresses this balance, drawing on his twenty-five years of experience of teaching thermodynamics at undergraduate and postgraduate level, to produce a definitive text to cover thoroughly, advanced syllabuses. The book introduces the basic concepts which apply over the whole range of new technologies, considering: a new approach to cycles, enabling their irreversibility to be taken into account; a detailed study of combustion to show how the chemical energy in a fuel is converted into thermal energy and emissions; an analysis of fuel cells to give an understanding of the direct conversion of chemical energy to electrical power; a detailed study of property relationships to enable more sophisticated analyses to be made of both high and low temperature plant and irreversible thermodynamics, whose principles might hold a key to new ways of efficiently covering energy to power (e.g. solar energy, fuel cells). Worked examples are included in most of the chapters, followed by exercises with solutions. By developing thermodynamics from an explicitly equilibrium perspective, showing how all systems attempt to reach a state of equilibrium, and the effects of these systems when they cannot, the result is an unparalleled insight into the more advanced considerations when converting any form of energy into power, that will prove invaluable to students and professional engineers of all disciplines.




Applied Thermodynamics


Book Description

Deals with the availability method and its application to power plant system design and energy conversion. The first part of the book describes the development and the formulation of the availability method. The second part presents its applications to energy conversion processes. Examples for each energy conversion system are introduced and there are practice problems throughout the text.




Lectures in Classical Thermodynamics with an Introduction to Statistical Mechanics


Book Description

This textbook facilitates students’ ability to apply fundamental principles and concepts in classical thermodynamics to solve challenging problems relevant to industry and everyday life. It also introduces the reader to the fundamentals of statistical mechanics, including understanding how the microscopic properties of atoms and molecules, and their associated intermolecular interactions, can be accounted for to calculate various average properties of macroscopic systems. The author emphasizes application of the fundamental principles outlined above to the calculation of a variety of thermodynamic properties, to the estimation of conversion efficiencies for work production by heat interactions, and to the solution of practical thermodynamic problems related to the behavior of non-ideal pure fluids and fluid mixtures, including phase equilibria and chemical reaction equilibria. The book contains detailed solutions to many challenging sample problems in classical thermodynamics and statistical mechanics that will help the reader crystallize the material taught. Class-tested and perfected over 30 years of use by nine-time Best Teaching Award recipient Professor Daniel Blankschtein of the Department of Chemical Engineering at MIT, the book is ideal for students of Chemical and Mechanical Engineering, Chemistry, and Materials Science, who will benefit greatly from in-depth discussions and pedagogical explanations of key concepts. Distills critical concepts, methods, and applications from leading full-length textbooks, along with the author’s own deep understanding of the material taught, into a concise yet rigorous graduate and advanced undergraduate text; Enriches the standard curriculum with succinct, problem-based learning strategies derived from the content of 50 lectures given over the years in the Department of Chemical Engineering at MIT; Reinforces concepts covered with detailed solutions to illuminating and challenging homework problems.




Introductory Chemical Engineering Thermodynamics


Book Description

A Practical, Up-to-Date Introduction to Applied Thermodynamics, Including Coverage of Process Simulation Models and an Introduction to Biological Systems Introductory Chemical Engineering Thermodynamics, Second Edition, helps readers master the fundamentals of applied thermodynamics as practiced today: with extensive development of molecular perspectives that enables adaptation to fields including biological systems, environmental applications, and nanotechnology. This text is distinctive in making molecular perspectives accessible at the introductory level and connecting properties with practical implications. Features of the second edition include Hierarchical instruction with increasing levels of detail: Content requiring deeper levels of theory is clearly delineated in separate sections and chapters Early introduction to the overall perspective of composite systems like distillation columns, reactive processes, and biological systems Learning objectives, problem-solving strategies for energy balances and phase equilibria, chapter summaries, and “important equations” for every chapter Extensive practical examples, especially coverage of non-ideal mixtures, which include water contamination via hydrocarbons, polymer blending/recycling, oxygenated fuels, hydrogen bonding, osmotic pressure, electrolyte solutions, zwitterions and biological molecules, and other contemporary issues Supporting software in formats for both MATLAB® and spreadsheets Online supplemental sections and resources including instructor slides, ConcepTests, coursecast videos, and other useful resources




Applied Thermodynamics


Book Description

This Book Presents A Systematic Account Of The Concepts And Principles Of Engineering Thermodynamics And The Concepts And Practices Of Thermal Engineering. The Book Covers Basic Course Of Engineering Thermodynamics And Also Deals With The Advanced Course Of Thermal Engineering. This Book Will Meet The Requirements Of The Undergraduate Students Of Engineering And Technology Undertaking The Compulsory Course Of Engineering Thermodynamics. The Subject Matter Of Book Is Sufficient For The Students Of Mechanical Engineering/Industrial-Production Engineering, Aeronautical Engineering, Undertaking Advanced Courses In The Name Of Thermal Engineering/Heat Engineering/ Applied Thermodynamics Etc. Presentation Of The Subject Matter Has Been Made In Very Simple And Understandable Language. The Book Is Written In Si System Of Units And Each Chapter Has Been Provided With Sufficient Number Of Typical Numerical Problems Of Solved And Unsolved Questions With Answers.