Introduction to Neutrosophic Statistics


Book Description

Neutrosophic Statistics means statistical analysis of population or sample that has indeterminate (imprecise, ambiguous, vague, incomplete, unknown) data. For example, the population or sample size might not be exactly determinate because of some individuals that partially belong to the population or sample, and partially they do not belong, or individuals whose appurtenance is completely unknown. Also, there are population or sample individuals whose data could be indeterminate. In this book, we develop the 1995 notion of neutrosophic statistics. We present various practical examples. It is possible to define the neutrosophic statistics in many ways, because there are various types of indeterminacies, depending on the problem to solve.




Neutrosophy


Book Description




Interval Neutrosophic Sets and Logic: Theory and Applications in Computing


Book Description

This book presents the advancements and applications of neutrosophics, which are generalizations of fuzzy logic, fuzzy set, and imprecise probability. The neutrosophic logic, neutrosophic set, neutrosophic probability, and neutrosophic statistics are increasingly used in engineering applications (especially for software and information fusion), medicine, military, cybernetics, physics.In the last chapter a soft semantic Web Services agent framework is proposed to facilitate the registration and discovery of high quality semantic Web Services agent. The intelligent inference engine module of soft semantic Web Services agent is implemented using interval neutrosophic logic.




Neutrosophic Set - A Generalization of The Intuitionistic Fuzzy Set


Book Description

In this paper one generalizes the intuitionistic fuzzy set (IFS), paraconsistent set, and intuitionistic set to the neutrosophic set (NS). Many examples are presented. Distinctions between NS and IFS are underlined.




Fuzzy Cognitive Maps and Neutrosophic Cognitive Maps


Book Description

In a world of chaotic alignments, traditional logic with its strict boundaries of truth and falsity has not imbued itself with the capability of reflecting the reality. Despite various attempts to reorient logic, there has remained an essential need for an alternative system that could infuse into itself a representation of the real world. Out of this need arose the system of Neutrosophy (the philosophy of neutralities, introduced by FLORENTIN SMARANDACHE), and its connected logic Neutrosophic Logic, which is a further generalization of the theory of Fuzzy Logic. In this book we study the concepts of Fuzzy Cognitive Maps (FCMs) and their Neutrosophic analogue, the Neutrosophic Cognitive Maps (NCMs). Fuzzy Cognitive Maps are fuzzy structures that strongly resemble neural networks, and they have powerful and far-reaching consequences as a mathematical tool for modeling complex systems. Neutrosophic Cognitive Maps are generalizations of FCMs, and their unique feature is the ability to handle indeterminacy in relations between two concepts thereby bringing greater sensitivity into the results. Some of the varied applications of FCMs and NCMs which has been explained by us, in this book, include: modeling of supervisory systems; design of hybrid models for complex systems; mobile robots and in intimate technology such as office plants; analysis of business performance assessment; formalism debate and legal rules; creating metabolic and regulatory network models; traffic and transportation problems; medical diagnostics; simulation of strategic planning process in intelligent systems; specific language impairment; web-mining inference application; child labor problem; industrial relations: between employer and employee, maximizing production and profit; decision support in intelligent intrusion detection system; hyper-knowledge representation in strategy formation; female infanticide; depression in terminally ill patients and finally, in the theory of community mobilization and women empowerment relative to the AIDS epidemic.







Introduction to Statistical Process Control


Book Description

An Introduction to the Fundamentals and History of Control Charts, Applications, and Guidelines for Implementation Introduction to Statistical Process Control examines various types of control charts that are typically used by engineering students and practitioners. This book helps readers develop a better understanding of the history, implementation, and use-cases. Students are presented with varying control chart techniques, information, and roadmaps to ensure their control charts are operating efficiently and producing specification-confirming products. This is the essential text on the theories and applications behind statistical methods and control procedures. This eight-chapter reference breaks information down into digestible sections and covers topics including: ● An introduction to the basics as well as a background of control charts ● Widely used and newly researched attributes of control charts, including guidelines for implementation ● The process capability index for both normal and non-normal distribution via the sampling of multiple dependent states ● An overview of attribute control charts based on memory statistics ● The development of control charts using EQMA statistics For a solid understanding of control methodologies and the basics of quality assurance, Introduction to Statistical Process Control is a definitive reference designed to be read by practitioners and students alike. It is an essential textbook for those who want to explore quality control and systems design.




Neutrosophic Graphs: A New Dimension to Graph Theory


Book Description

Studies to neutrosophic graphs happens to be not only innovative and interesting, but gives a new dimension to graph theory. The classic coloring of edge problem happens to give various results. Neutrosophic tree will certainly find lots of applications in data mining when certain levels of indeterminacy is involved in the problem. Several open problems are suggested.




Neutrosophic Graph Theory and Algorithms


Book Description

Graph theory is a specific concept that has numerous applications throughout many industries. Despite the advancement of this technique, graph theory can still yield ambiguous and imprecise results. In order to cut down on these indeterminate factors, neutrosophic logic has emerged as an applicable solution that is gaining significant attention in solving many real-life decision-making problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistency, and indeterminacy. However, empirical research on this specific graph set is lacking. Neutrosophic Graph Theory and Algorithms is a collection of innovative research on the methods and applications of neutrosophic sets and logic within various fields including systems analysis, economics, and transportation. While highlighting topics including linear programming, decision-making methods, and homomorphism, this book is ideally designed for programmers, researchers, data scientists, mathematicians, designers, educators, researchers, academicians, and students seeking current research on the various methods and applications of graph theory.




Neutrosophic Statistics is an extension of Interval Statistics, while Plithogenic Statistics is the most general form of statistics (second version)


Book Description

In this paper, we prove that Neutrosophic Statistics is more general than Interval Statistics, since it may deal with all types of indeterminacies (with respect to the data, inferential procedures, probability distributions, graphical representations, etc.), it allows the reduction of indeterminacy, and it uses the neutrosophic probability that is more general than imprecise and classical probabilities and has more detailed corresponding probability density functions. While Interval Statistics only deals with indeterminacy that can be represented by intervals. And we respond to the arguments by Woodall et al. [1]. We show that not all indeterminacies (uncertainties) may be represented by intervals. Also, in some cases, we should better use hesitant sets (that have less indeterminacy) instead of intervals. We redirect the authors to the Plithogenic Probability and Plithogenic Statistics which are the most general forms of MultiVariate Probability and Multivariate Statistics respectively (including, of course, the Imprecise Probability and Interval Statistics as subclasses).