Introduction to Refractories for Iron- and Steelmaking


Book Description

This book promotes understanding of the raw material selection, refractory design, tailor-made refractory developments, refractory properties, and methods of application. It provides a complete analysis of modern iron and steel refractories. It describes the daily demands on modern refractories and describes how these needs can be addressed or improved upon to help achieve the cleanest and largest yields of iron and steel. The text contains end-of-chapter summaries to help reinforce difficult concepts. It also includes problems at the end of chapters to confirm the reader's understanding of topics such as hoop stress modeling in steel ladle and vessels, establishment of thermal gradient modeling , refractory corrosion dynamics, calculation of Blast furnace trough dimension based on thermal modeling, to name a few. Led by editors with backgrounds in both academia and industry, this book can be used in college courses, as a reference for industry professionals, and as an introduction to the technology for those making the transition to industry. Stands as a comprehensive introduction to the science and technology of modern steel and iron-making refractories that examines the processes, construction, and potential improvement of refractory performance and sustainability; Serves as a versatile resource appropriate for all levels, from the student to industry novices to professionals; Reinforces difficult-to-grasp concepts with end-of-chapter summaries; Maximizes reader understanding of key topics, such as refractory selection for steel ladle and vessels, and their corrosion dynamics, with real life problems.




Fundamental Design of Steelmaking Refractories


Book Description

Fundamental Design of Steelmaking Refractories Comprehensive up-to-date resource organizing fundamental aspects for the design and performance of steelmaking refractories Fundamental Design of Steelmaking Refractories provides a fundamental understanding in the design of steelmaking refractories, in detail and all in one source, enabling readers to understand various issues including how heat and mass transfer occurs throughout the refractory, how matrix impurity or their contact affects the phases, and how invisible defects form during refractory manufacturing that eventually facilitates to analyze wear, corrosion, and performance of different refractory linings for primary and secondary steelmaking vessels, tundish, and continuous casting refractories. Other specific sample topics covered in Fundamental Design of Steelmaking Refractories include: Phase formations and correlation with impurity effects and refractory processing shortcomings Stress, wear, and corrosion to design refractories and performance statistics of steelmaking refractories Equilibrium and non-equilibrium phases, packing, stress and defects in compaction, and degree of ceramic bonding Thermal and mechanical behavior, flow control mechanisms, continuous casting refractories, and premature refractory damage Precast and purging system, consistent supply and time management, and preventive maintenance in operation With its complete coverage of the subject, Fundamental Design of Steelmaking Refractories fulfills the academic demand of undergraduate, postgraduate, and research scholars of ceramic engineering; metallurgical engineers and mechanical engineering outlets that want to nurture in the refractory and steel sectors will also find value in the text.







Monolithic Refractories


Book Description

This valuable handbook details the various monolithic refractories currently in use, and pays particular attention to their chemical and physical behaviors during manufacturing, installation, and the duty cycle. It addresses, from the practitioner's point of view, the critical aspects of reactions involved with the refractory body as it approaches the used temperature with the processing environment. To ensure optimum performance, it describes the application, installation, and design of refractory components. The handbook includes suitable tables and figures, and provides an historical perspective on the evolution of the refractory industry. Practicing ceramic engineers, scientists, raw material suppliers, and research and development personnel in the refractory manufacturing industry will find this book invaluable. Also suitable as a reference for courses in ceramic engineering specializing in refractories.




An Introduction to Ceramics and Refractories


Book Description

This book covers the fundamental aspects of ceramics and refractories. All refractories are ceramics, but all ceramics are not refractories. The book classifies and describes these materials, and examines their availability in nature. It examines the availability of these materials in nature, how they are extracted from nature, and how some of these materials are synthesized, and explains their structure-property correlation. It also addresses how they are designed for various applications and more.




Refractories for the Steel Industry


Book Description




Refractory Technology


Book Description

This book explains the refractories from different fundamental aspects, even with the support of phase diagrams, and also details the prominent applications of these industrial materials. The initial chapters cover fundamentals of refractories, classifications, properties, and testing, while later chapters describe different common shaped and unshaped refractories in detail and special refractories in a concise manner. The second edition includes new classifications, microstructures, the effect of impurities with binary and ternary phase diagrams, and recent trends in refractories including homework problems and an updated bibliography. Features: Provides exclusive material on refractories Discusses detailed descriptions of different shaped and unshaped refractories Covers concepts like environmental issues, recycling, and nanotechnology Explores details on testing and specifications including thermochemical and corrosion behavior Includes a separate chapter on trends of refractories and other issues This book is aimed at junior/senior undergraduate students and researchers of ceramics, metallurgical engineering, and refractories.







Treatise on Process Metallurgy, Volume 2: Process Phenomena


Book Description

Process metallurgy provides academics with the fundamentals of the manufacturing of metallic materials, from raw materials into finished parts or products. Coverage is divided into three volumes, entitled Process Fundamentals, encompassing process fundamentals, extractive and refining processes, and metallurgical process phenomena; Processing Phenomena, encompassing ferrous processing; non-ferrous processing; and refractory, reactive and aqueous processing of metals; and Industrial Processes, encompassing process modeling and computational tools, energy optimization, environmental aspects and industrial design. The work distils 400+ years combined academic experience from the principal editor and multidisciplinary 14-member editorial advisory board, providing the 2,608-page work with a seal of quality. The volumes will function as the process counterpart to Robert Cahn and Peter Haasen's famous reference family, Physical Metallurgy (1996)--which excluded process metallurgy from consideration and which is currently undergoing a major revision under the editorship of David Laughlin and Kazuhiro Hono (publishing 2014). Nevertheless, process and extractive metallurgy are fields within their own right, and this work will be of interest to libraries supporting courses in the process area. - Synthesizes the most pertinent contemporary developments within process metallurgy so scientists have authoritative information at their fingertips - Replaces existing articles and monographs with a single complete solution, saving time for busy scientists - Helps metallurgists to predict changes and consequences and create or modify whatever process is deployed




Refractories Handbook


Book Description

This comprehensive reference details the technical, chemical, and mechanical aspects of high-temperature refractory composite materials for step-by-step guidance on the selection of the most appropriate system for specific manufacturing processes. The book surveys a wide range of lining system geometries and material combinations and covers a broad