Introduction to the Physics of Rocks


Book Description

Finding viable solutions to many of the problems threatening our environment hinges on understanding the rocks below the earth's surface. For those evaluating the relative hazards of radioactive waste sites, investigating energy resources such as oil, gas, and hydrothermal energy, studying the behavior of natural hazards like earthquakes and volcanoes, or charting the flow of groundwater through the earth, this book will be indispensable. Until now, there has been no book that treats the subject of the nature and behavior of rocks in a comprehensive yet accessible manner. Yves Gu guen and Victor Palciauskas first discuss the physical properties of rocks, proceeding by chapter through mechanical, fluid flow, acoustical, electrical, dielectric, thermal, and magnetic properties. Then they provide the theoretical framework for achieving reliable data and making reasonable inferences about the aggregate system within the earth. Introduction to the Physics of Rocks covers the important and most current theoretical approaches to the physics of inhomogeneous media, including theoretical bounds on properties, various effective medium theories, percolation, and fractals. This book will be of use to students and researchers in civil, petroleum, and environmental engineering and to geologists, geophysicists, hydrologists, and other earth scientists interested in the physics of the earth. Its clear presentation, with problems at the end of each chapter and selective references, will make it ideal for advanced undergraduate-or graduate-level courses.




Fundamentals of Rock Physics


Book Description

Rock physics encompasses practically all aspects of solid and fluid state physics. This book provides a unified presentation of the underlying physical principles of rock physics, covering elements of mineral physics, petrology and rock mechanics. After a short introduction on rocks and minerals, the subsequent chapters cover rock density, porosity, stress and strain relationships, permeability, poroelasticity, acoustics, conductivity, polarizability, magnetism, thermal properties and natural radioactivity. Each chapter includes problem sets and focus boxes with in-depth explanations of the physical and mathematical aspects of underlying processes. The book is also supplemented by online MATLAB exercises to help students apply their knowledge to numerically solve rock physics problems. Covering laboratory and field-based measurement methods, as well as theoretical models, this textbook is ideal for upper-level undergraduate and graduate courses in rock physics. It will also make a useful reference for researchers and professional scientists working in geoscience and petroleum engineering.




Physical Properties of Rocks


Book Description

A symbiosis of a brief description of physical fundamentals of the rock properties (based on typical experimental results and relevant theories and models) with a guide for practical use of different theoretical concepts.




Quantitative Seismic Interpretation


Book Description

Quantitative Seismic Interpretation demonstrates how rock physics can be applied to predict reservoir parameters, such as lithologies and pore fluids, from seismically derived attributes. The authors provide an integrated methodology and practical tools for quantitative interpretation, uncertainty assessment, and characterization of subsurface reservoirs using well-log and seismic data. They illustrate the advantages of these new methodologies, while providing advice about limitations of the methods and traditional pitfalls. This book is aimed at graduate students, academics and industry professionals working in the areas of petroleum geoscience and exploration seismology. It will also interest environmental geophysicists seeking a quantitative subsurface characterization from shallow seismic data. The book includes problem sets and a case-study, for which seismic and well-log data, and MATLAB® codes are provided on a website (http://www.cambridge.org/9780521151351). These resources will allow readers to gain a hands-on understanding of the methodologies.




Introduction to Rock Mechanics


Book Description

Introduces a new approach to rock mechanics called ``block theory,'' which formalizes procedures for selecting proper shapes and orientations for excavations in hard jointed rock. Applies block theory to rock slopes and underground excavations, and covers the Q theory of rock classification, the empirical criterion of joint shear strength, rock bolting, properties of weak rocks, statistical frequency of jointing, an empirical criterion of rock strength, and design of underground supports. Contains many new problems with worked-out solutions.




Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization


Book Description

The Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization combines in a single useful handbook the multidisciplinary domains of the petroleum industry, including the fundamental concepts of rock physics, acoustic logging, waveform processing, and geophysical application modeling through graphical examples derived from field data. It includes results from core studies, together with graphics that validate and support the modeling process, and explores all possible facets of acoustic applications in reservoir evaluation for hydrocarbon exploration, development, and drilling support. The Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization serves as a technical guide and research reference for oil and gas professionals, scientists, and students in the multidisciplinary field of reservoir characterization through the use of petrosonics. It overviews the fundamentals of borehole acoustics and rock physics, with a focus on reservoir evaluation applications, explores current advancements through updated research, and identifies areas of future growth. - Presents theory, application, and limitations of borehole acoustics and rock physics through field examples and case studies - Features "Petrosonic Workflows" for various acoustic applications and evaluations, which can be easily adapted for practical reservoir modeling and interpretation - Covers the potential advantages of acoustic-based techniques and summarizes key results for easy geophysical application




Fundamentals of Rock Mechanics


Book Description




Rocks


Book Description

"In this Very Short Introduction Jan Zalasiewicz looks at the structure and diversity of rocks, and the processes by which they form. He describes their formation during the birth of our planet; considers what rocks there might be in Earth's deep mantle and core and on other planets; and shows how humans are creating new rock types today."--




Understanding Amplitudes


Book Description

Elementary, conceptual, and easy to read, this book describes the methods and techniques used to estimate rock properties from seismic data, based on a sound understanding of the elastic properties of materials and rocks and how the amplitudes of seismic reflections change with those properties. By examining the recorded seismic amplitudes in some detail, we can deduce properties beyond the basic geological structure of the subsurface. We can, using AVO and other amplitude techniques, characterize rocks and the reservoirs inside them with some degree of qualitative, and even quantitative, detail. Mathematics is not ignored, but is kept to a minimum. Intended for geophysicists, seismic acquisition specialists, processors, and interpreters, even those with little previous exposure to ‘quantitative interpretation’, ‘interpretive processing’ or ‘advanced seismic analysis’, this book also would be appropriate for geologists, engineers, and technicians who are familiar with the concepts but need a methodical review as well as managers and businesspeople who would like to obtain an understanding of these concepts.




Preferred Orientation in Deformed Metal and Rocks


Book Description

This volume provides an introduction to the texture analysis of deformed materials and explores methods of determining and interpreting the preferred orientation of crystals in deformed polycrystalline aggregates.**The book reviews: 1) the techniques, procedures, and theoretical basis for the accumulation and analysis of orientation data; 2)the processes by which polycrystals deform and the microstructural mechanisms responsible for the development of the preferred orientation; 3) the textures in specific systems and application of principles to the solution of specific problems.**With a combination of metallurgic and geologic applications, Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis will be an important source book for students and researchers in materials science, solid state physics, structural geology, and geophysics.**FROM THE PREFACE: Determination and interpretation of the preferred orientation of crystals in deformed polycrystalline aggregates (in this volume also referred to as texture) has been of longstanding concern to both materials scientists and geologists. A similar theoretical background--such as the dislocation theory of crystal plasticity--has been the basis of understanding flow in metals and rocks; and similar determinative techniques--including microscopy and x-ray diffraction--have been used to study textures and microstructures. Whereas many of the fundamental principles have been established early this century by scientists such as Jeffery, Sachs, Sander, Schmid, Schmidt, and Taylor, only in recent years has knowledge reached a level that provides a quantitative framework which has replaced a largely phenomenological approach. This is expressed in the sudden new emphasis on textural studies, as documented by the large number of recent publications.**This volume contains material to serve as an introduction for those who wish to enter this field as well as reviews for those who are already engaged in advanced research....**The book is divided into three parts. The first (Chapters 2*b17) deals with techniques, procedures, and theoretical bases for the accumulation and analysis of orientation data. The second (Chapters 8*b112) introduces processes by which polycrystals deform and the microstructural mechanisms responsible for the development of the preferred orientation. All those chapters emphasize basic principles and apply to metals as well as to minerals. The third part (Chapters 13*b126) illustrates textures in specific systems and the application of the principles set out in the earlier chapters to the solution of specific problems. Readers of these chapters will quickly become aware that metals have been more exhaustively studied than minerals; but they will also realize that, because of their structural symmetry, metals are in general much simpler than rocks and that the intepretation of metal textures is less involved. An extensive list of relevant references provides access to much of the original literature on textures....