An Introduction to Invariant Imbedding


Book Description

Here is a book that provides the classical foundations of invariant imbedding, a concept that provided the first indication of the connection between transport theory and the Riccati Equation. The reprinting of this classic volume was prompted by a revival of interest in the subject area because of its uses for inverse problems. The major part of the book consists of applications of the invariant imbedding method to specific areas that are of interest to engineers, physicists, applied mathematicians, and numerical analysts. A large set of problems can be found at the end of each chapter. Numerous problems on apparently disparate matters such as Riccati equations, continued fractions, functional equations, and Laplace transforms are included. The exercises present the reader with "real-life" situations. The material is accessible to a general audience, however, the authors do not hesitate to state, and even to prove, a rigorous theorem when one is available. To keep the original flavor of the book, very few changes were made to the manuscript; typographical errors were corrected and slight changes in word order were made to reduce ambiguities.







Initial Value Methods for Boundary Value Problems: Theory and Application of Invariant Imbedding


Book Description

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering




Numerical Solution of Boundary Value Problems for Ordinary Differential Equations


Book Description

This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.




Codes for Boundary-Value Problems in Ordinary Differential Equations


Book Description

Conceptually, a database consists of objects and relationships. Object Relationship Notation (ORN) is a simple notation that more precisely defines relationships by combining UML multiplicities with uniquely defined referential actions. Object Relationship Notation (ORN) for Database Applications: Enhancing the Modeling and Implementation of Associations shows how ORN can be used in UML class diagrams & database definition languages (DDLs) to better model & implement relationships & thus more productively develop database applications. For the database developer, it presents many examples of relationships modeled using ORN-extended class diagrams & shows how these relationships are easily mapped to an ORN-extended SQL or Object DDL. For the DBMS developer, it presents the specifications & algorithms needed to implement ORN in a relational and object DBMS. This book also describes tools that can be downloaded or accessed via the Web. These tools allow databases to be modeled using ORN and implemented using automatic code generation that adds ORN support to Microsoft SQL Server and Progress Object Store.




Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations


Book Description

Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations covers the proceedings of the 1974 Symposium by the same title, held at the University of Maryland, Baltimore Country Campus. This symposium aims to bring together a number of numerical analysis involved in research in both theoretical and practical aspects of this field. This text is organized into three parts encompassing 15 chapters. Part I reviews the initial and boundary value problems. Part II explores a large number of important results of both theoretical and practical nature of the field, including discussions of the smooth and local interpolant with small K-th derivative, the occurrence and solution of boundary value reaction systems, the posteriori error estimates, and boundary problem solvers for first order systems based on deferred corrections. Part III highlights the practical applications of the boundary value problems, specifically a high-order finite-difference method for the solution of two-point boundary-value problems on a uniform mesh. This book will prove useful to mathematicians, engineers, and physicists.










Technical Books and Monographs


Book Description