Nonlinear Control Systems


Book Description

The purpose of this book is to present a self-contained description of the fun damentals of the theory of nonlinear control systems, with special emphasis on the differential geometric approach. The book is intended as a graduate text as weil as a reference to scientists and engineers involved in the analysis and design of feedback systems. The first version of this book was written in 1983, while I was teach ing at the Department of Systems Science and Mathematics at Washington University in St. Louis. This new edition integrates my subsequent teaching experience gained at the University of Illinois in Urbana-Champaign in 1987, at the Carl-Cranz Gesellschaft in Oberpfaffenhofen in 1987, at the University of California in Berkeley in 1988. In addition to a major rearrangement of the last two Chapters of the first version, this new edition incorporates two additional Chapters at a more elementary level and an exposition of some relevant research findings which have occurred since 1985.




Analysis and Design of Nonlinear Control Systems


Book Description

This book is a tribute to Prof. Alberto Isidori on the occasion of his 65th birthday. Prof. Isidori’s proli?c, pioneering and high-impact research activity has spanned over 35 years. Throughout his career, Prof. Isidori has developed ground-breaking results, has initiated researchdirections and has contributed towardsthe foundationofnonlinear controltheory.In addition,his dedication to explain intricate issues and di?cult concepts in a simple and rigorous way and to motivate young researchers has been instrumental to the intellectual growth of the nonlinear control community worldwide. The volume collects 27 contributions written by a total of 52 researchers. The principal author of each contribution has been selected among the - searchers who have worked with Prof. Isidori, have in?uenced his research activity, or have had the privilege and honour of being his PhD students. The contributions address a signi?cant number of control topics, including th- retical issues, advanced applications, emerging control directions and tutorial works. The diversity of the areas covered, the number of contributors and their international standing provide evidence of the impact of Prof. Isidori in the control and systems theory communities. The book has been divided into six parts: System Analysis, Optimization Methods, Feedback Design, Regulation, Geometric Methods and Asymptotic Analysis, re?ecting important control areas which have been strongly in- enced and, in some cases, pioneered by Prof. Isidori.




Nonlinear Control Systems and Power System Dynamics


Book Description

Nonlinear Control Systems and Power System Dynamics presents a comprehensive description of nonlinear control of electric power systems using nonlinear control theory, which is developed by the differential geometric approach and nonlinear robust control method. This book explains in detail the concepts, theorems and algorithms in nonlinear control theory, illustrated by step-by-step examples. In addition, all the mathematical formulation involved in deriving the nonlinear control laws of power systems are sufficiently presented. Considerations and cautions involved in applying nonlinear control theory to practical engineering control designs are discussed and special attention is given to the implementation of nonlinear control laws using microprocessors. Nonlinear Control Systems and Power System Dynamics serves as a text for advanced level courses and is an excellent reference for engineers and researchers who are interested in the application of modern nonlinear control theory to practical engineering control designs.










Nonlinear Systems Analysis


Book Description

When M. Vidyasagar wrote the first edition of Nonlinear Systems Analysis, most control theorists considered the subject of nonlinear systems a mystery. Since then, advances in the application of differential geometric methods to nonlinear analysis have matured to a stage where every control theorist needs to possess knowledge of the basic techniques because virtually all physical systems are nonlinear in nature. The second edition, now republished in SIAM's Classics in Applied Mathematics series, provides a rigorous mathematical analysis of the behavior of nonlinear control systems under a variety of situations. It develops nonlinear generalizations of a large number of techniques and methods widely used in linear control theory. The book contains three extensive chapters devoted to the key topics of Lyapunov stability, input-output stability, and the treatment of differential geometric control theory. Audience: this text is designed for use at the graduate level in the area of nonlinear systems and as a resource for professional researchers and practitioners working in areas such as robotics, spacecraft control, motor control, and power systems.










Advances and Applications in Nonlinear Control Systems


Book Description

The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design procedures on the nonlinear control systems are emphasized using MATLAB software.