Forthcoming Networks and Sustainability in the AIoT Era


Book Description

This book introduces a groundbreaking approach to enhancing IoT device security, providing a comprehensive overview of its applications and methodologies. Covering a wide array of topics, from crime prediction to cyberbullying detection, from facial recognition to analyzing email spam, it addresses diverse challenges in contemporary society. Aimed at researchers, practitioners, and policymakers, this book equips readers with practical tools to tackle real-world issues using advanced machine learning algorithms. Whether you're a data scientist, law enforcement officer, or urban planner, this book is a valuable resource for implementing predictive models and enhancing public safety measures. It is a comprehensive guide for implementing machine learning solutions across various domains, ensuring optimal performance and reliability. Whether you're delving into IoT security or exploring the potential of AI in urban landscapes, this book provides invaluable insights and tools to navigate the evolving landscape of technology and data science. The book provides a comprehensive overview of the challenges and solutions in contemporary cybersecurity. Through case studies and practical examples, readers gain a deeper understanding of the security concerns surrounding IoT devices and learn how to mitigate risks effectively. The book's interdisciplinary approach caters to a diverse audience, including academics, industry professionals, and government officials, who seek to address the growing cybersecurity threats in IoT environments. Key uses of this book include implementing robust security measures for IoT devices, conducting research on machine learning algorithms for attack detection, and developing policies to enhance cybersecurity in IoT ecosystems. By leveraging advanced machine learning techniques, readers can effectively detect and mitigate cyber threats, ensuring the integrity and reliability of IoT systems. Overall, this book is a valuable resource for anyone involved in designing, implementing, or regulating IoT devices and systems.




Handbook of Research on AI-Based Technologies and Applications in the Era of the Metaverse


Book Description

The recent advancements in the field of the internet of things (IoT), AI, big data, blockchain, augmented reality (AR)/virtual reality (VR), cloud platforms, quantum computing, cybersecurity, and telecommunication technology enabled the promotion of conventional computer-aided industry to the metaverse ecosystem that is powered by AR/VR-driven technologies. In this paradigm shift, the integrated technologies of IoT and AI play a vital role to connect the cyberspace of computing systems and virtual environments. AR/VR supports a huge range of industrial applications such as logistics, the food industry, and manufacturing utilities. AI-Based Technologies and Applications in the Era of the Metaverse discusses essential components of the metaverse ecosystem such as concepts, methodologies, technologies, modeling, designs, statistics, implementation, and maintenance. Covering key topics such as machine learning, deep learning, quantum computing, and blockchain, this premier reference source is ideal for computer scientists, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students.







Examining the Metaverse in Healthcare: Opportunities, Challenges, and Future Directions


Book Description

The metaverse is not merely a futuristic concept but a tangible force that, when harnessed, can revolutionize patient experiences, care delivery, and outcomes. The global market projection foresees a staggering CAGR of 35.28% and a valuation of $54.47 billion by 2030. Augmented reality (AR) and virtual reality (VR) technologies have propelled medical training, teaching modules, and surgical procedures to unprecedented precision. However, these advancements are not without their challenges. Examining the Metaverse in Healthcare: Opportunities, Challenges, and Future Directions delves into the intricacies of this technological paradigm shift, dissecting the opportunities, challenges, and future directions it presents. The book navigates the complexities of integrating these technologies, exploring how the metaverse builds upon existing concepts such as Virtual Clinics, AI utilization, augmented reality, Human Digital Twins, medical simulations, and robotics. It examines the impact on patient and clinician experiences, identifying the gaps and obstacles that must be overcome.




Responsible and Explainable Artificial Intelligence in Healthcare


Book Description

Responsible and Explainable Artificial Intelligence in Healthcare: Ethics and Transparency at the Intersection provides clear guidance on building trustworthy Artificial Intelligence systems for healthcare. The book focuses on using Artificial Intelligence to improve diagnosis, prevent diseases, and personalize patient care. It addresses potential drawbacks, like reduced human interaction and ethical concerns, offering solutions for ethical and transparent Artificial Intelligence use in medicine. Across eight chapters, the book explores Artificial Intelligence's current status, its importance, and associated risks in healthcare. It explains designing reliable Artificial Intelligence for healthcare, tackling biases, and safeguarding patient privacy in the age of big data. The legal and regulatory landscape is also covered. One chapter is dedicated to showcasing real-world examples of responsible Artificial Intelligence in healthcare, highlighting best practices. The book concludes by summarizing key takeaways and discussing future challenges. "Responsible and Explainable Artificial Intelligence in Healthcare: Ethics and Transparency at the Intersection" is a valuable resource for healthcare professionals, policymakers, computer scientists, and ethicists concerned about Artificial Intelligence's ethical and societal impact on medicine. - Gives insights into the responsible and explainable use of Artificial Intelligence in healthcare and explore the challenges and opportunities for promoting ethical and transparent practices in this field - Offers the solution to strike a balance between patient privacy and data exchange - Provides concrete advice on how to create trustworthy, accountable, and transparent Artificial Intelligence systems - Explains the moral and social effects of Artificial intelligence in healthcare and suggests ways to encourage its ethical application




Data-Driven Farming


Book Description

In the dynamic realm of agriculture, artificial intelligence (AI) and machine learning (ML) emerge as catalysts for unprecedented transformation and growth. The emergence of big data, Internet of Things (IoT) sensors, and advanced analytics has opened up new possibilities for farmers to collect and analyze data in real-time, make informed decisions, and increase efficiency. AI and ML are key enablers of data-driven farming, allowing farmers to use algorithms and predictive models to gain insights into crop health, soil quality, weather patterns, and more. Agriculture is an industry that is deeply rooted in tradition, but the landscape is rapidly changing with the emergence of new technologies. Data-Driven Farming: Harnessing the Power of AI and Machine Learning in Agriculture is a comprehensive guide that explores how the latest advances in technology can help farmers make better decisions and maximize yields. It offers a detailed overview of the intersection of data, AI, and ML in agriculture and offers real-world examples and case studies that demonstrate how these tools can help farmers improve efficiency, reduce waste, and increase profitability. Exploring how AI and ML can be used to achieve sustainable and profitable farming practices, the book provides an introduction to the basics of data-driven farming, including an overview of the key concepts, tools, and technologies. It also discusses the challenges and opportunities facing farmers in today’s data-driven landscape. Covering such topics as crop monitoring, weather forecasting, pest management, and soil health management, the book focuses on analyzing data, predicting outcomes, and optimizing decision-making in a range of agricultural contexts.




Metaheuristics and Reinforcement Techniques for Smart Sensor Applications


Book Description

This book discusses the fundamentals of wireless sensor networks,and the prevailing method and trends of smart sensor applications. It presents analytical modelling to foster the understanding of network challenges in developing protocols for next-generation communication standards. • Presents an overview of the low-power sensor, network standards, design challenges and sensor network simulation • Focusses on clustering, methods available for wireless sensor networks to tackle energy hole problems, load balancing and network lifetime enhancements • Discusses enhanced versions of energy models enriched with energy harvesting • Provides an insight into coverage and connectivity issues with genetic meta-heuristics, evolutionary models and reinforcement methodologies designed for wireless sensor networks • Includes a wide range of sensor network applications and their integration with social networks and neural computing. The reference book is for researchers and scholars interested in Smart Sensor applications.







Proceeding of the International Conference on Connected Objects and Artificial Intelligence (COCIA2024)


Book Description

This book aims at meeting the challenge of getting along with today's unprecedented rate of innovation supported by disruptive digital technologies, which changed the perception of the productivity and effectiveness and opened a gateway to more than ever dynamic advances in solving the important societal challenges. "Disruptive Information Technologies for a Smart Society" is the proceedings book of the 14th International Conference for Information Society and Technologies that brings together experts from various fields to discuss the latest advancements in industrial AI, digitalization in health, well-being and sport, enterprise information systems, large language models, and security and safety. The book and the conference serve as a platform for researchers of all career stages in technical sciences, especially Ph.D. students, practitioners, and industry experts in health care, AI and other areas to share and learn on the cutting-edge technologies and stay at the forefront of these rapidly evolving fields.




Advances in Computational Collective Intelligence


Book Description

This book constitutes the refereed proceedings of the 15th International Conference on Advances in Computational Collective Intelligence, ICCCI 2023, held in Budapest, Hungary, during September 27–29, 2023. The 59 full papers included in this book were carefully reviewed and selected from 218 submissions. They were organized in topical sections as follows: Collective Intelligence and Collective Decision-Making, Deep Learning Techniques, Natural Language Processing, Data Minning and Machine learning, Social Networks and Speek Communication, Cybersecurity and Internet of Things, Cooperative Strategies for Decision Making and Optimization, Digital Content Understanding and Apllication for Industry 4.0 and Computational Intelligence in Medical Applications.