Book Description
Development of good predictive models for jet noise has always been plagued by the difficulty in obtaining good quality data over a wide range of conditions in different facilities.We consider such issues very carefully in selecting data to be used in developing our model. Flight effects are of critical importance, and none of the means of determining them are without significant problems. Free-jet flight simulation facilities are very useful, and can provide meaningful data so long as they can be analytically transformed to the flight frame of reference. In this report we show that different methodologies used by NASA and industry to perform this transformation produce very different results, especially in the rear quadrant; this compels us to rely largely on static data to develop our model, but we show reasonable agreement with simulated flight data when these transformation issues are considered. A persistent problem in obtaining good quality data is noise generated in the experimental facility upstream of the test nozzle: valves, elbows, obstructions, and especially the combustor can contribute significant noise, and much of this noise is of a broadband nature, easily confused with jet noise. Muffling of these sources is costly in terms of size as well as expense, and it is particularly difficult in flight simulation facilities, where compactness of hardware is very important, as discussed by Viswanathan (Ref. 13). We feel that the effects of jet density on jet mixing noise may have been somewhat obscured by these problems, leading to the variable density exponent used in most jet noise prediction procedures including our own. We investigate this issue, applying Occam s razor, (e.g., Ref. 14), in a search for the simplest physically meaningful model that adequately describes the observed phenomena. In a similar vein, we see no reason to reject the Lighthill approach; it provides a very solid basis upon which to build a predictive procedure, as we believe we dem