Jet Propulsion


Book Description

This book is an introduction to the design of modern civil and military jet engines using engine design projects.




Jet Propulsion


Book Description

This is the second edition of Cumpsty's excellent self-contained introduction to the aerodynamic and thermodynamic design of modern civil and military jet engines. Through two engine design projects, first for a new large passenger aircraft, and second for a new fighter aircraft, the text introduces, illustrates and explains the important facets of modern engine design. Individual sections cover aircraft requirements and aerodynamics, principles of gas turbines and jet engines, elementary compressible fluid mechanics, bypass ratio selection, scaling and dimensional analysis, turbine and compressor design and characteristics, design optimization, and off-design performance. The book emphasises principles and ideas, with simplification and approximation used where this helps understanding. This edition has been thoroughly updated and revised, and includes a new appendix on noise control and an expanded treatment of combustion emissions. Suitable for student courses in aircraft propulsion, but also an invaluable reference for engineers in the engine and airframe industry.




Jet Propulsion Engines


Book Description

Volume XII of the High Speed Aerodynamics and Jet Propulsion series. Partial Contents: Historical development of jet propulsion; basic principles of jet propulsion; analyses of the various types of jet propulsion engines including the turbojet, the turboprop, the ramjet, and intermittent jets, as well as solid and liquid propellant rocket engines and the ramrocket. Another section deals with jet driven rotors. The final sections discuss the use of atomic energy in jet propulsion and the future prospects of jet propulsion. Originally published in 1959. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.




Fundamentals of Jet Propulsion with Applications


Book Description

This introductory 2005 text on air-breathing jet propulsion focuses on the basic operating principles of jet engines and gas turbines. Previous coursework in fluid mechanics and thermodynamics is elucidated and applied to help the student understand and predict the characteristics of engine components and various types of engines and power gas turbines. Numerous examples help the reader appreciate the methods and differing, representative physical parameters. A capstone chapter integrates the text material into a portion of the book devoted to system matching and analysis so that engine performance can be predicted for both on- and off-design conditions. The book is designed for advanced undergraduate and first-year graduate students in aerospace and mechanical engineering. A basic understanding of fluid dynamics and thermodynamics is presumed. Although aircraft propulsion is the focus, the material can also be used to study ground- and marine-based gas turbines and turbomachinery and some advanced topics in compressors and turbines.




Aerothermodynamics and Jet Propulsion


Book Description

Get up to speed with this robust introduction to the aerothermodynamics principles underpinning jet propulsion, and learn how to apply these principles to jet engine components. Suitable for undergraduate students in aerospace and mechanical engineering, and for professional engineers working in jet propulsion, this textbook includes consistent emphasis on fundamental phenomena and key governing equations, providing students with a solid theoretical grounding on which to build practical understanding; clear derivations from first principles, enabling students to follow the reasoning behind key assumptions and decisions, and successfully apply these approaches to new problems; practical examples grounded in real-world jet propulsion scenarios illustrate new concepts throughout the book, giving students an early introduction to jet and rocket engine considerations; and online materials for course instructors, including solutions, figures, and software resources, to enhance student teaching.




Commercial Aircraft Propulsion and Energy Systems Research


Book Description

The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.




Aircraft Propulsion and Gas Turbine Engines


Book Description

Aircraft Propulsion and Gas Turbine Engines, Second Edition builds upon the success of the book’s first edition, with the addition of three major topic areas: Piston Engines with integrated propeller coverage; Pump Technologies; and Rocket Propulsion. The rocket propulsion section extends the text’s coverage so that both Aerospace and Aeronautical topics can be studied and compared. Numerous updates have been made to reflect the latest advances in turbine engines, fuels, and combustion. The text is now divided into three parts, the first two devoted to air breathing engines, and the third covering non-air breathing or rocket engines.







Aircraft Gas Turbine Engines


Book Description

Provides the reader with a working understanding of modern aircraft gas turbine engines, with the applicability (or lack of applicability) to military use such as Army jets and helicopters, interwoven into the text. Details of specific makes and models of turbines are provided as examples. Chapters include ...(1) Theory of Gas Turbine Engines ...(2) Principles of Operation ...(3) Engine Components ...(4) Testing and Inspection ...(5) The Lycoming T53 ...(6) The Lycoming T55 ...(7) The Solar T62 ...(8) The Allison T63 ...(9) The Pratt and Whitney T73 ...(10) The Pratt and Whitney T74 ...(11) The General Electric T700 ...(12) Appendix, References and Subject Index.




Jet Propulsion


Book Description

This is the second edition of Cumpsty's excellent self-contained introduction to the aerodynamic and thermodynamic design of modern civil and military jet engines. Through two engine design projects, first for a new large passenger aircraft, and second for a new fighter aircraft, the text introduces, illustrates and explains the important facets of modern engine design. Individual sections cover aircraft requirements and aerodynamics, principles of gas turbines and jet engines, elementary compressible fluid mechanics, bypass ratio selection, scaling and dimensional analysis, turbine and compressor design and characteristics, design optimization, and off-design performance. The book emphasises principles and ideas, with simplification and approximation used where this helps understanding. This edition has been thoroughly updated and revised, and includes a new appendix on noise control and an expanded treatment of combustion emissions. Suitable for student courses in aircraft propulsion, but also an invaluable reference for engineers in the engine and airframe industry.