Neural Network Parallel Computing


Book Description

Neural Network Parallel Computing is the first book available to the professional market on neural network computing for optimization problems. This introductory book is not only for the novice reader, but for experts in a variety of areas including parallel computing, neural network computing, computer science, communications, graph theory, computer aided design for VLSI circuits, molecular biology, management science, and operations research. The goal of the book is to facilitate an understanding as to the uses of neural network models in real-world applications. Neural Network Parallel Computing presents a major breakthrough in science and a variety of engineering fields. The computational power of neural network computing is demonstrated by solving numerous problems such as N-queen, crossbar switch scheduling, four-coloring and k-colorability, graph planarization and channel routing, RNA secondary structure prediction, knight's tour, spare allocation, sorting and searching, and tiling. Neural Network Parallel Computing is an excellent reference for researchers in all areas covered by the book. Furthermore, the text may be used in a senior or graduate level course on the topic.




Process Neural Networks


Book Description

For the first time, this book sets forth the concept and model for a process neural network. You’ll discover how a process neural network expands the mapping relationship between the input and output of traditional neural networks and greatly enhances the expression capability of artificial neural networks. Detailed illustrations help you visualize information processing flow and the mapping relationship between inputs and outputs.




Artificial Intelligence in the Age of Neural Networks and Brain Computing


Book Description

Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making Edited by high-level academics and researchers in intelligent systems and neural networks Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks







Generative Adversarial Learning: Architectures and Applications


Book Description

This book provides a collection of recent research works addressing theoretical issues on improving the learning process and the generalization of GANs as well as state-of-the-art applications of GANs to various domains of real life. Adversarial learning fascinates the attention of machine learning communities across the world in recent years. Generative adversarial networks (GANs), as the main method of adversarial learning, achieve great success and popularity by exploiting a minimax learning concept, in which two networks compete with each other during the learning process. Their key capability is to generate new data and replicate available data distributions, which are needed in many practical applications, particularly in computer vision and signal processing. The book is intended for academics, practitioners, and research students in artificial intelligence looking to stay up to date with the latest advancements on GANs’ theoretical developments and their applications.







Person Re-Identification


Book Description

The first book of its kind dedicated to the challenge of person re-identification, this text provides an in-depth, multidisciplinary discussion of recent developments and state-of-the-art methods. Features: introduces examples of robust feature representations, reviews salient feature weighting and selection mechanisms and examines the benefits of semantic attributes; describes how to segregate meaningful body parts from background clutter; examines the use of 3D depth images and contextual constraints derived from the visual appearance of a group; reviews approaches to feature transfer function and distance metric learning and discusses potential solutions to issues of data scalability and identity inference; investigates the limitations of existing benchmark datasets, presents strategies for camera topology inference and describes techniques for improving post-rank search efficiency; explores the design rationale and implementation considerations of building a practical re-identification system.




VLSI Design of Neural Networks


Book Description

The early era of neural network hardware design (starting at 1985) was mainly technology driven. Designers used almost exclusively analog signal processing concepts for the recall mode. Learning was deemed not to cause a problem because the number of implementable synapses was still so low that the determination of weights and thresholds could be left to conventional computers. Instead, designers tried to directly map neural parallelity into hardware. The architectural concepts were accordingly simple and produced the so called interconnection problem which, in turn, made many engineers believe it could be solved by optical implementation in adequate fashion only. Furthermore, the inherent fault-tolerance and limited computation accuracy of neural networks were claimed to justify that little effort is to be spend on careful design, but most effort be put on technology issues. As a result, it was almost impossible to predict whether an electronic neural network would function in the way it was simulated to do. This limited the use of the first neuro-chips for further experimentation, not to mention that real-world applications called for much more synapses than could be implemented on a single chip at that time. Meanwhile matters have matured. It is recognized that isolated definition of the effort of analog multiplication, for instance, would be just as inappropriate on the part ofthe chip designer as determination of the weights by simulation, without allowing for the computing accuracy that can be achieved, on the part of the user.




Interdisciplinary Computing in Java Programming


Book Description

Books on computation in the marketplace tend to discuss the topics within specific fields. Many computational algorithms, however, share common roots. Great advantages emerge if numerical methodologies break the boundaries and find their uses across disciplines. Interdisciplinary Computing In Java Programming Language introduces readers of different backgrounds to the beauty of the selected algorithms. Serious quantitative researchers, writing customized codes for computation, enjoy cracking source codes as opposed to the black-box approach. Most C and Fortran programs, despite being slightly faster in program execution, lack built-in support for plotting and graphical user interface. This book selects Java as the platform where source codes are developed and applications are run, helping readers/users best appreciate the fun of computation. Interdisciplinary Computing In Java Programming Language is designed to meet the needs of a professional audience composed of practitioners and researchers in science and technology. This book is also suitable for senior undergraduate and graduate-level students in computer science, as a secondary text.