Introduction to Physical Oceanography


Book Description

This book is written for college juniors and seniors and new graduate students in meteorology, ocean engineering, and oceanography. It begins with a brief overview of what is known about the ocean. This is followed by a description of the ocean basins, for the shape of the seas influences the physical processes in the water. Next, students will study the external forces, wind and heat, acting on the ocean, and the ocean's response. It also includes the equations describing dynamic response of the ocean. For example, the equations of motion, the influence of earth's rotation, and viscosity. Finally, students consider some particular examples: the deep circulation, the equatorial ocean and El NiE no, and the circulation of particular areas of the ocean. Contents: 1) A Voyage of Discovery. 2) The Historical Setting. 3) The Physical Setting. 4) Atmospheric Influences. 5) The Oceanic Heat Budget. 6) Temperature, Salinity and Density. 7) The Equations of Motion. 8) Equations of Motion with Viscosity. 9) Response of the Upper Ocean to Winds. 10) Geostrophic Currents. 11) Wind Driven Ocean Circulation. 12) Vorticity in the Ocean. 13) Deep Circulation in the Ocean. 14) Equatorial Processes. 15) Numerical Models. 16) Ocean Waves. 17) Coastal Processes and Tides."




Physical Oceanography and Climate


Book Description

An engaging and accessible textbook focusing on climate dynamics from the perspective of the ocean, specifically interactions between the atmosphere and ocean. It describes the fundamental physics and dynamics governing the behaviour of the ocean, and provides numerous end-of-chapter questions and access to online data sets.




Physical Oceanography of the Adriatic Sea


Book Description

Because of its centrallocation in the Old World, the Adriatic Sea has long been explored and studied. Modern methods of investigation, however, have accelerated the pace of study during the last decade. These are the ADCP currentmeter, satellite imagery, drifter technology, and, last but not least, the computer with its arsenal of tools for data analysis and model simulations. As a result of this renaissance, the Adriatic Sea and its sub-basins are currently the object of intensified scrutiny by a number of scientific teams, in Europe and be yond. Questions concerning the mesoscale variability that dominates regional motions, the seasonal circulation of the sea, and its long-term climatic role in the broader Mediterranean, have become topics of lively discussions. The time was ripe then when an international workshop dedicated to the physical oceanography of the Adriatic Sea was convened in Trieste on 21-25 September 1998. Its objectives were to assess the current knowledge of the oceanography of the Adriatic Sea, to review the newly acquired observations, to create syn ergy between model simulations and observations, and to identify directions for future Adriatic oceanography. This book, however,is not the mere proceedings of the workshop. It was written as a monograph synthetizing the current knowledge of the physical oceanography of the Adriatic Sea, with the hope that it will serve as a reference to anyone interested in the Adriatic. The book also identifies topics in need of additional inquiry and proposes research directions for the next decade.




Physical Oceanography of the Baltic Sea


Book Description

The Baltic Sea oceanographic research community is wide and the research history is over 100 years old. Nevertheless, there is still no single, coherent book on the physical oceanography of the Baltic Sea as a whole. There is a strong need for such a book, coming from working oceanographers as well as the university teaching programmes in advanced undergraduate to graduate levels. In the regional conference series in physical oceanography (Baltic Sea Science Conference, Baltic Sea Oceanographers' conference, Baltex-conferences) about 500 scientists take part regularly. Even more scientists work in the fields of marine biology, chemistry and the environment, and they need information on the physics of the Baltic Sea as well. There are nine countries bordering on the Baltic Sea and five more in the runoff area. The Baltic Sea as a source of fish, means of transportation and leisure activities is highly important to the regional society. In the runoff area there are a total of 85 million people. Research and protection strategies need to be developed, as the Baltic Sea is probably the most polluted sea in the world. Since the Baltic Sea has become an inner sea of the EU (apart from small shore parts of Russia in Petersburg and Kaliningrad), it is anticipated that the importance of the region will consequently rise. The book will arouse interest among students, scientists and decision makers involved with the Baltic problems. It will also give important background information for those working with biogeochemical processes in the Baltic Sea, because the physical forcing for those processes is of vital importance.




Treatise on Estuarine and Coastal Science


Book Description

The study of estuaries and coasts has seen enormous growth in recent years, since changes in these areas have a large effect on the food chain, as well as on the physics and chemistry of the ocean. As the coasts and river banks around the world become more densely populated, the pressure on these ecosystems intensifies, putting a new focus on environmental, socio-economic and policy issues. Written by a team of international expert scientists, under the guidance of Chief Editors Eric Wolanski and Donald McClusky, the Treatise on Estuarine and Coastal Science, Ten Volume Set examines topics in depth, and aims to provide a comprehensive scientific resource for all professionals and students in the area of estuarine and coastal science Most up-to-date reference for system-based coastal and estuarine science and management, from the inland watershed to the ocean shelf Chief editors have assembled a world-class team of volume editors and contributing authors Approach focuses on the physical, biological, chemistry, ecosystem, human, ecological and economics processes, to show how to best use multidisciplinary science to ensure earth's sustainability Provides a comprehensive scientific resource for all professionals and students in the area of estuarine and coastal science Features up-to-date chapters covering a full range of topics




Descriptive Physical Oceanography


Book Description

The rapidly developing field of oceanography has necessitated the publication of a fifth edition of this classic textbook. The revised version provides an introduction to descriptive (synoptic) oceanography and contains updated information on topics such as the heat budget, instruments and in particular, the use of satellites. The sections on equatorial oceanography, sea-ice physics, distribution and El Nino have been completely rewritten. The book is further supplemented by text on thermohaline circulation, mixing and also coral reef oceanography.




Collected Reprints


Book Description




Physical Oceanography of the Dying Aral Sea


Book Description

Physical Oceanography of the Dying Aral Sea describes the background, present crisis state, and possible future of this peculiar inland water body from the physical oceanographic standpoint. Based on a wide range of material, a large part of which was published in Russian and has not been previously available to the international reader, the book first provides an historical overview of this unique system, which possesses both lake and sea properties. Next, the current physical state of the lake is described, partly based on original field research and model experiments, along with the remote sensing data, model results and analyses extracted from recent literature. Next, book attempts to forecast the forthcoming state of the Aral Sea and identify plausible future scenarios. Finally, the book discusses the Aral Sea dessication viewd as a part of the global perspective.




Stochastic Modelling in Physical Oceanography


Book Description

The study of the ocean is almost as old as the history of mankind itself. When the first seafarers set out in their primitive ships they had to understand, as best they could, tides and currents, eddies and vortices, for lack of understanding often led to loss of live. These primitive oceanographers were, of course, primarily statisticians. They collected what empirical data they could, and passed it down, ini tially by word of mouth, to their descendants. Data collection continued throughout the millenia, and although data bases became larger, more re liable, and better codified, it was not really until surprisingly recently that mankind began to try to understand the physics behind these data, and, shortly afterwards, to attempt to model it. The basic modelling tool of physical oceanography is, today, the partial differential equation. Somehow, we all 'know" that if only we could find the right set of equations, with the right initial and boundary conditions, then we could solve the mysteries of ocean dynamics once and for all.